Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A 2.7 mol% yttria stabilizing tetragonal zirconia (2.7Y-TZP) nanopowder was synthesized and stored for five years. Humidity and unsatisfactory storage conditions gradually caused heavy agglomeration. Within a few months, 2.7Y-TZP nanopowder became useless for any technological application. A bead-milling deagglomeration technique was applied to recover the heavily agglomerated yttria-stabilized zirconia nanopowder. Low-temperature sintering and spark plasma sintering (SPS) were performed, resulting in fully dense nanostructured ceramics. Compacts formed with heavily agglomerated powder present low sinterability and poor mechanical properties. Bead-milling suspension formed compacts exhibit mechanical properties in the range of the values reported for nanostructured zirconia. This observation confirms the effectiveness of bead-milling in the deagglomeration of highly agglomerated nanopowders. The high value of Vickers hardness of 13.6 GPa demonstrates the success of the processing technique for recovering long-time-stored oxide nanopowders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2645 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!