Cobalt ferrite (CoFe2O4) nano-particles were synthesized by the hydrothermal method with the addition of a surfactant sodium bis(2-ethylhexyl) sulphosuccinate (AOT). Characterization measurements including X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy showed that all the final products were single-phase CoFe2O4 nano-crystals with AOT molecules bonding to the surfaces, the average crystallite sizes were all near 25 nm, and the lattice constant increased with the increasing mass of AOT. The magnetic hysteresis loops measured at room temperature indicated that the bonding of the AOT to the surfaces led to an increase of the saturation magnetization (Ms), the coercivity (Hc) and the remanence ratio (Mr/Ms). Furthermore, as the concentration of AOT reached the critical micelle concentration (CMC), turning points were observed in the the curves of Hc, Mr/Ms and K(eff) (effective magnetic anisotropy constants) versus. the mass of AOT due to the formation of the AOT micelles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!