Objective: To construct and express the recombinant plasmid pET32a-SjPGAM-SjEnol and evaluate its immuno-protective efficacy against the infection of Schistosoma japonicum in mice.

Methods: The peptides of SjPGAM and SjEnol containing the multivalent epitopes with higher binding capacity of human MHC II and mouse H2-dII but low homology with the host were analyzed and screened through bioinformatics. The corresponding nucleotide sequence of selected epitopes was spliced and the recombinant plasmid pET32a-SjPGAM-SjEnol was constructed and expressed in Escherichia coli BL21 cells. The antigenicity of the recombinant protein was detected by Western blotting and the protective effect induced with the recombinant was evaluated in mice. 55 BALB/c mice were randomly divided into 5 groups each with 11. Mice from groups A, B and C were injected with a mixture of recombinant protein (27 microg) pET32a-SjPGAM-SjEnol (A), pETL28a-SjPGAM (B) and pET28a-SjEnol (C) respectively together with 206 adjuvant, mice from groups D and E received adjuvant or PBS only, all injected for three times at two-week intervals. Mice were then challenged with 40 +/- 2 cercariae of S. japonicum at two weeks after the last vaccination, and sacrificed for perfusion by 6 weeks post infection. Adult worms were collected, the number of eggs in a gram of liver tissue was counted, and the rates of worm reduction and egg reduction were calculated. Serum samples were collected before vaccination, every one week after each inoculation and before sacrifice, and specific IgG was detected by ELISA.

Results: The sequences encoding the 96-147 aa of SjPGAM and 233-312 aa of SjEonl were chosen for constructing the recombinant plasmid, a cDNA fragment with the length of 447 bp was amplified by PCR. The recombinant plasmid was expressed in E. coli with a molecular weight of Mr 33,000. Western blotting revealed that the fusion protein was recognized by the rabbit serum specific to SjSWAP, and showed an adequate antigenicity. Vaccination experiment showed that when compared with those of the blank control, the worm reduction rate in group A was 39.7%, significantly higher than that of groups B (18.5%) and C (14.7%) (P < 0.05). The liver egg reduction rate in group A was 64.9%, also higher than that of groups B (47.5%, P < 0.05) and C (30.5%, P < 0.01). ELISA showed that the serum specific IgG in group A (2.372 +/- 0.268) was much higher than that of groups D (0.490 +/- 0.138) (P < 0.01 and E (0.220 +/- 0.088) (P < 0.01).

Conclusion: The recombinant plasmid pET32a-SjPGAM-SjEnol has been constructed, and recombinant protein pET32a-SjPGAM-SjEnol induces higher immune-protection against S. japonicum than that of SjPGAM and SjEonl.

Download full-text PDF

Source

Publication Analysis

Top Keywords

recombinant plasmid
20
plasmid pet32a-sjpgam-sjenol
12
recombinant protein
12
higher groups
12
recombinant
10
immuno-protective efficacy
8
schistosoma japonicum
8
pet32a-sjpgam-sjenol constructed
8
western blotting
8
mice groups
8

Similar Publications

The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.

View Article and Find Full Text PDF

Background: SAP2 is closely associated with the pathogenicity and drug resistance of Candida albicans (C. albicans). Our study aimed to construct C.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution.

Microb Biotechnol

December 2024

Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA.

A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!