The muscular dystrophies are a large and heterogeneous group of neuromuscular disorders that can be classified according to the mode of inheritance, the clinical phenotype and the molecular defect. To better understand the pathological mechanisms of dysferlin myopathy we compared the protein-expression pattern in the muscle biopsies of six patients with this disease with six patients with limb girdle muscular dystrophy 2A, five with facioscapulohumeral dystrophy and six normal control subjects. To investigate differences in the expression levels of skeletal muscle proteins we used 2-DE and MS. Western blot or immunohistochemistry confirmed relevant results. The study showed specific increase expression of proteins involved in fast-to-slow fiber type conversion (ankyrin repeat protein 2), type I predominance (phosphorylated forms of slow troponin T), sarcomere stabilization (actinin-associated LIM protein), protein ubiquitination (TRIM 72) and skeletal muscle differentiation (Rho-GDP-dissociation inhibitor ly-GDI) in dysferlin myopathy. As anticipated, we also found differential expression of proteins common to all the muscular dystrophies studied. This comparative proteomic analysis suggests that in dysferlin myopathy (i) the type I fiber predominance is an active process of fiber type conversion rather than a selective loss of type II fibers and (ii) the dysregulation of proteins involved in muscle differentiation further confirms the role of dysferlin in this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prca.200800087 | DOI Listing |
Neuromuscul Disord
December 2024
Service de Neuromyologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France Institut de Myologie, Sorbonne Université, APHP, Paris, France. Electronic address:
Dysferlinopathies, caused by mutations in the dysferlin gene (DYSF) encoding the dysferlin protein, are a clinically heterogeneous group of autosomal recessive muscular dystrophies whose phenotypic spectrum is still evolving. Here we described a patient reporting diffuse muscular pain non related to physical exercise, mimicking fibromyalgic syndrome. Electroneuromyography was normal.
View Article and Find Full Text PDFDystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients.
View Article and Find Full Text PDFScience
November 2024
Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Ribozymes are small catalytic RNA sequences capable of nucleotide-specific self-cleavage found widespread in nature. Ribozyme cleavage generates distinct 2',3'-phosphate and 5'-hydroxyl termini that resemble substrates for recently characterized RNA repair pathways in cells. We report that ribozyme cleavage of two separate mRNAs activated their scarless trans-ligation and translation into full-length protein in eukaryotic cells, a process that we named StitchR (for Stitch RNA).
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies.
View Article and Find Full Text PDFCureus
September 2024
Neurology, Marek Kulma Praktyka Lekarska, Gorzkowice, POL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!