Controlling aberrant protein kinase activity is a promising strategy for a variety of diseases, particularly cancer. Hence, the development of kinase inhibitors is currently a focal point for pharmaceutical research. In this study we utilize a chip-based reverse phase protein array (RPA) platform for profiling of kinase inhibitors in cell-based assays. In combination with the planar wave-guide technology the assay system has an absolute LOD down to the low zeptomole range. A431 cell lysates were analyzed for the activation state of key effectors in the epidermal growth factor (EGF) and insulin signaling pathways to validate this model for compound screening. A microtiter-plate format for growing, treating, and lysing cells was shown to be suitable for this approach, establishing the value of the technology as a screening tool for characterization of large numbers of kinase inhibitors against a wide variety of cellular signaling pathways. Moreover, the reverse array format allows rapid development of site-specific phosphorylation assays, since in contrast to ELISA type systems only a single antigen-specific antibody is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prca.200800070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!