Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A detailed and quantitative analysis of disease-relevant signaling will greatly contribute to our understanding of tumorigenesis and cancer progression, and thus open new strategies for drug discovery. However, throughput and sensitivity of currently established methods available for proteome profiling do not comply with the needs of clinical research such as high sample capacity and low sample consumption. Protein microarrays emerged as a promising alternative to analyze the abundance of proteins and their phosphorylation status on a high-throughput level. Here we summarize recent methodological advancements in the field of reverse-phase protein arrays and demonstrate their potential for clinical research as well as for in vitro applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prca.200780035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!