The aim of this study was to determine if differential solubilization of human CNS proteins would increase the total number of proteins that could be visualized using 2-D gel electrophoresis. Hence, proteins were solubilized into Tris, CHAPS and SB3-10 before separation across a pH 4-7 IEF gradient and a 12-14% SDS polyacrylamide gel, which could be achieved with a run-to-run variation of 35% in spot intensity. Because Western blot analyses suggested proteins could be in more than one detergent fraction, we completed a conservative analyses of our 2-D gels assuming spots that appeared on multiple gels at the same molecular weight and pI were the same protein. These analyses show that we had visualized over 3000 unique protein spots across three 2-D gels generated from each sample of human frontal cortex and caudate-putamen. This represented, at worst, a significant increase in the number of spots visualized in the acidic protein spectrum compared to what has been reported in other studies of human CNS. This study, therefore, supports the proposal that the analysis of the human CNS proteome using 2-D gel electrophoresis, combined with appropriate sample preparation, can be used to expand the studies on the pathologies of neurological and psychiatric diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056166 | PMC |
http://dx.doi.org/10.1002/prca.200800037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!