In oral mucosa lesions it is frequently difficult to differentiate between precursor lesions and already manifest oral squamous cell carcinoma. Therefore, multiple scalpel biopsies are necessary to detect tumor cells already in early stages and to guarantee an accurate follow-up. We analyzed oral brush biopsies (n = 49) of normal mucosa, inflammatory and hyperproliferative lesions, and oral squamous cell carcinoma with ProteinChip Arrays (SELDI) as a non-invasive method to characterize putative tumor cells. Three proteins were found that differentiated between these three stages. These three proteins are able to distinguish between normal cells and tumor cells with a sensitivity of 100% and specificity of 91% and can distinguish inflammatory/hyperproliferative lesions from tumor cells with a sensitivity of up to 91% and specificity of up to 90%. Two of these proteins have been identified by immunodepletion as S100A8 and S100A9 and this identification was confirmed by immunocytochemistry. For the first time, brush biopsies have been successfully used for proteomic biomarker discovery. The identified protein markers are highly specific for the distinction of the three analyzed stages and therewith reflect the progression from normal to premalignant non-dysplastic and finally to tumor tissue. This knowledge could be used as a first diagnostic step in the monitoring of mucosal lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prca.200600669DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
brush biopsies
12
oral brush
8
s100a8 s100a9
8
normal premalignant
8
oral squamous
8
squamous cell
8
cell carcinoma
8
three proteins
8
cells sensitivity
8

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.

View Article and Find Full Text PDF

CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment.

Curr Pharm Biotechnol

January 2025

Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to-be University, Shirpur - 425405, India.

The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!