The pathology of Alzheimer's disease (AD) begins years prior to clinical diagnosis. The development of antecedent biomarkers that indicate the presence of AD pathology and predict risk for decline in both cognitively normal and mildly impaired individuals will be useful as effective therapies are developed. While cerebrospinal fluid (CSF) markers such as amyloid-β (Aβ) 42 and tau are useful, additional biomarkers are needed. To identify new markers, we utilized 2-D difference gel electrophoresis (2-D DIGE) of individual CSF samples from subjects with very mild AD versus controls after depletion of high-abundant proteins. Protein spots displaying differential abundance between the two groups were identified with MS. A number of candidate biomarkers were identified in 18 gel features. Selected candidates were quantified in a larger clinical set using ELISA. The mean levels of α1-antichymotrypsin (ACT), antithrombin III (ATIII), and zinc-α2-glycoprotein (ZAG) were significantly higher in the mild AD group, and the mean level of carnosinase 1 (CNDP1) was decreased. When these biomarkers are optimally combined, there is a strong trend toward greater specificity and sensitivity based on clinical diagnosis than when used individually. Our findings provide novel biomarker candidates for very mild and mild AD that can be further assessed as antecedent markers and predictors of clinical progression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prca.200600999DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
clinical diagnosis
8
biomarkers
5
identification validation
4
validation novel
4
novel csf
4
csf biomarkers
4
biomarkers early
4
early stages
4
stages alzheimer's
4

Similar Publications

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.

Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).

View Article and Find Full Text PDF

Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!