Background: CCN1 is an evolutionary ancient matricellular protein that modulates biological processes associated with tissue repair. Induction at sites of injury was observed in conditions ranging from skin wounds to cardiac diseases, including ischemic and inflammatory cardiomyopathy. Here, we provide evidence of a novel function of CCN1 as a modulator of immune cell migration.

Methods And Results: to understand the role of CCN1 in cardiomyopathies and to evaluate its therapeutic potential, we overexpressed CCN1 using an adenoviral hepatotropic vector in murine experimental autoimmune myocarditis, a model of human inflammatory cardiomyopathy. CCN1 gene transfer significantly reduced cardiac disease score and immune cell infiltration. In vivo tracking of hemagglutinin epitope-tagged CCN1 revealed binding to spleen macrophages but not to cardiomyocytes. Unexpectedly, CCN1 therapy left cardiac chemokine and cytokine expression unchanged but instead strongly inhibited the migration of spleen macrophages and lymphocytes, as evidenced by ex vivo transwell assays. In accordance with the ex vivo data, in vitro preincubation with CCN1 diminished transwell migration of human monocytes and abrogated their chemotactic response to monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and stromal cell-derived factor-1α. Further mechanistic studies showed that CCN1-driven modulation of immune cell migration is mimicked in part by cyclic RGD peptides currently in clinical evaluation for cancer therapy.

Conclusions: our proof-of-concept study suggests investigation of CCN1 as a novel, endogenous "parent compound" for chemotaxis modulation and of cyclic RGD peptides as a class of partially CCN1-mimetic drugs with immediate potential for clinical evaluation in cardiac diseases associated with chronic pathogenic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.945261DOI Listing

Publication Analysis

Top Keywords

immune cell
16
ccn1
10
experimental autoimmune
8
autoimmune myocarditis
8
cell migration
8
cardiac diseases
8
inflammatory cardiomyopathy
8
spleen macrophages
8
cyclic rgd
8
rgd peptides
8

Similar Publications

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

scRNA + BCR-seq identifies proportions and characteristics of dual BCR B cells in the peritoneal cavity of mice and peripheral blood of healthy human donors across different ages.

Immun Ageing

December 2024

Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.

The increased incidence of inflammatory diseases, infectious diseases, autoimmune disorders, and tumors in elderly individuals is closely associated with several well-established features of immunosenescence, including reduced B cell genesis and dampened immune responses. Recent studies have highlighted the critical role of dual receptor lymphocytes in tumors and autoimmune diseases. This study utilized shared data generated through scRNA-seq + scBCR-seq technology to investigate the presence of dual receptor-expressing B cells in the peritoneum of mouse and peripheral blood of healthy volunteers, and whether there are age-related differences in dual receptor B cell populations.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!