Histone acetylation plays an important role in regulating gene transcription and silencing in Plasmodium falciparum. Histone deacetylase (HDAC) inhibitors, particularly those of the hydroxamate class, have been shown to have potent in vitro activity against drug-resistant and -sensitive laboratory strains of P. falciparum, raising their potential as a new class of antimalarial compounds. In the current study, stage-specific ex vivo susceptibility profiles of representative hydroxamate-based HDAC inhibitors suberoylanilide hydroxamic acid (SAHA), 2-ASA-9, and 2-ASA-14 (2-ASA-9 and 2-ASA-14 are 2-aminosuberic acid-based HDAC inhibitors) were assessed in multidrug-resistant clinical isolates of P. falciparum (n = 24) and P. vivax (n = 25) from Papua, Indonesia, using a modified schizont maturation assay. Submicromolar concentrations of SAHA, 2-ASA-9, and 2-ASA-14 inhibited the growth of both P. falciparum (median 50% inhibitory concentrations [IC₅₀s] of 310, 533, and 266 nM) and P. vivax (median IC₅₀s of 170, 503, and 278 nM). Inverse correlation patterns between HDAC inhibitors and chloroquine for P. falciparum and mefloquine for P. vivax indicate species-specific susceptibility profiles for HDAC inhibitors. These HDAC inhibitors were also found to be potent ex vivo against P. vivax schizont maturation, comparable to that in P. falciparum, suggesting that HDAC inhibitors may be promising candidates for antimalarial therapy in geographical locations where both species are endemic. Further studies optimizing the selectivity and in vivo efficacy of HDAC inhibitors in Plasmodium spp. and defining drug interaction with common antimalarial compounds are warranted to investigate the role of HDAC inhibitors in antimalarial therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067106 | PMC |
http://dx.doi.org/10.1128/AAC.01220-10 | DOI Listing |
Cell Biochem Biophys
January 2025
Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan. Electronic address:
Objectives: Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release.
Methods: Ca9-22 cells were pretreated with curcumin before butyrate exposure.
Eur J Med Chem
December 2024
SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:
Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
Purpose: Relapsed and/or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome continue to have a poor prognosis with limited treatment options despite advancements in rational combination and targeted therapies. Belinostat (an HDAC inhibitor) and Pevonedistat (a NEDD8 inhibitor) have each been independently studied in hematologic malignancies and have tolerable safety profiles with limited single-agent activity. Preclinical studies in AML cell lines and primary AML cells show the combination to be highly synergistic, particularly in high-risk phenotypes such as p53 mutant and FLT-3-ITD positive cells.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!