The topoisomerase II inhibitor voreloxin causes cell cycle arrest and apoptosis in myeloid leukemia cells and acts in synergy with cytarabine.

Haematologica

Cardiff Experimental Cancer Medicine Centre, Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.

Published: March 2011

Background: Topoisomerase II is essential for the maintenance of DNA integrity and the survival of proliferating cells. Topoisomerase II poisons, including etoposide and doxorubicin, inhibit enzyme-mediated DNA ligation causing the accumulation of double-stranded breaks and have been front-line drugs for the treatment of leukemia for many years. Voreloxin is a first-in-class anti-cancer quinolone derivative that intercalates DNA and inhibits topoisomerase II. The efficacy and mechanisms of action of voreloxin in acute myeloid leukaemia were addressed in this study.

Design And Methods: Primary acute myeloid leukemia blasts (n = 88) and myeloid cell lines were used in vitro to study voreloxin through viability assays to assess cell killing and synergy with other drugs. Apoptosis and cell cycling were assessed by flow cytometry. DNA relaxation assays were utilized to determine that voreloxin was active on topoisomerase II.

Results: The mean lethal dose 50% (LD(50)) (± standard deviation) of voreloxin for primary acute myeloid leukemia blasts was 2.30 μM (± 1.87). Synergy experiments between voreloxin and cytarabine identified synergism in 22 of 25 primary acute myeloid leukemia samples tested, with a mean combination index of 0.79. Apoptosis was shown to increase in a dose-dependent manner. Furthermore, voreloxin was active in the p53-null K562 cell line suggesting that the action of voreloxin is not affected by p53 status. The action of voreloxin on topoisomerase II was confirmed using a DNA relaxation assay.

Conclusions: Voreloxin may provide an interesting addition to the cache of drugs available for the treatment of acute myeloid leukemia, a disease with a poor long-term survival. In addition to its potent action as a single agent in dividing cells, the synergy we demonstrated between voreloxin and cytarabine recommends further investigation of this topoisomerase II inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046270PMC
http://dx.doi.org/10.3324/haematol.2010.032680DOI Listing

Publication Analysis

Top Keywords

myeloid leukemia
20
acute myeloid
20
voreloxin
12
action voreloxin
12
primary acute
12
topoisomerase inhibitor
8
drugs treatment
8
leukemia blasts
8
dna relaxation
8
voreloxin active
8

Similar Publications

Recent advances in acute myeloid leukemia (AML) come from studies investigating younger (age<60 years) adults or older (age≥75 years) or less fit adults. Uncertainty exists for the management of otherwise healthy adults with AML in their 60s and 70s, which also represents a significant proportion of AML cases. We discuss current considerations in older, fit adults with AML including determination of fitness, what factors beyond fitness should be assessed, and finally what challenges and innovations lie ahead to improve outcomes for these patients.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Design and Discovery of Preclinical Candidate LYG-409 as a Highly Potent and Selective GSPT1 Molecular Glue Degraders.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.

Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!