SG 9R, a rough vaccine strain of Salmonella gallinarum, has been used for the prevention of fowl typhoid and paratyphoid in the world despite the presence of residual virulence. SG 9R-like rough strains have been recently isolated from fowl typhoid cases; however, molecular markers to differentiate SG 9R from field strains are not well-characterized and the molecular mechanisms of SG 9R residual virulence are unclear. Therefore, we analyzed LPS biosynthesis (rfa gene cluster) and virulence genes (spv, SPI-2) of both SG 9R and S. gallinarum rough field strains. SG 9R carried a unique nonsense mutation in rfaJ (TCA to TAA) and a shared rfaZ mutation (G-deletion) by rough and smooth S. gallinarum strains. SG 9R also carried intact SPI-2 and spvC, B, A, and R (except deleted spvD). SG 9R-like rough strains (n=10) carried identical mutations in virulence-related genes to SG 9R. SG 9R and SG 9R-like rough strains did not demonstrate significant mortality or liver lesions under normal conditions. However, fowl typhoid was successfully reproduced in the present study by SG 9R inoculation to 1-day-old male brown layer chicks per os following starvation. Therefore, the LPS defect may be one of the major mechanisms of SG 9R attenuation, and the possession of intact SPI-2, spvC, B, A, and R virulence genes may be associated with residual SG 9R virulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2010.11.067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!