Lipid peroxidation (LPO) end-product 4-hydroxynonenal (4-HNE) has been implicated in the mechanism of retinopathy. Lately it has been shown that besides being cytotoxic, 4-HNE plays an important role in oxidative stress-induced signaling. In this study, we have investigated the effect of 4-HNE on epidermal growth factor receptor (EGFR)-mediated signaling, its potential functional consequences, and the regulatory role of the 4-HNE metabolizing isozymes, glutathione S-transferase A4-4 (GSTA4-4) on this signaling in retinal pigment epithelial (RPE) cells. Our results showed that consistent with its known toxicity at relatively higher concentrations, 4-HNE induced cell death in RPE. However, at lower concentrations (as low as 0.1 μM) 4-HNE triggered phosphorylation of EGFR and activation of its down stream signaling components ERK1/2 and Akt that are known to be involved in cell proliferation. These effects of 4-HNE on EGFR could be attenuated by the over expression of GSTA4-4 that reduces intracellular levels of 4-HNE. Our results also indicated that 4-HNE-induced activation of EGFR is a protective mechanism against oxidative stress because EGFR, MEK, and PI3K inhibitors potentiated the toxicity of 4-HNE and also inhibited wound healing in a RPE cell model. These studies suggest that as an initial response to oxidative stress, 4-HNE induces protective mechanism(s) in RPE cells through EGFR-mediated signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064457 | PMC |
http://dx.doi.org/10.1016/j.exer.2010.11.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!