Background: During scleroderma (SSc) pathogenesis, fibroblasts acquire an activated phenotype characterized by enhanced production of extracellular matrix (ECM) and constitutive activation of several major signaling pathways including extracellular signal-related kinase (ERK1/2). Several studies have addressed the role of ERK1/2 in SSc fibrosis however the mechanism of its prolonged activation in SSc fibroblasts is still unknown. Protein phosphatase 2A (PP2A) is a key serine threonine phosphatase responsible for dephosphorylation of a wide array of signaling molecules. Recently published microarray data from cultured SSc fibroblasts suggests that the catalytic subunit (C-subunit) of PP2A is downregulated in SSc. In this study we examined the role and regulation of PP2A in SSc fibroblasts in the context of ERK1/2 phosphorylation and matrix production.
Results: We show for the first time that PP2A mRNA and protein expression are significantly reduced in SSc fibroblasts and correlate with an increase in ERK1/2 phosphorylation and collagen expression. Furthermore, transforming growth factor β (TGFβ), a major profibrotic cytokine implicated in SSc fibrosis, downregulates PP2A expression in healthy fibroblasts. PP2A-specific small interfering RNA (siRNA) was utilized to confirm the role of PP2A in ERK1/2 dephosphorylation in dermal fibroblasts. Accordingly, blockade of autocrine TGFβ signaling in SSc fibroblasts using soluble recombinant TGFβ receptor II (SRII) restored PP2A levels and decreased ERK1/2 phosphorylation and collagen expression. In addition, we observed that inhibition of ERK1/2 in SSc fibroblasts increased PP2A expression suggesting that ERK1/2 phosphorylation also contributes to maintaining low levels of PP2A, leading to an even further amplification of ERK1/2 phosphorylation.
Conclusions: Taken together, these studies suggest that decreased PP2A levels in SSc is a result of constitutively activated autocrine TGFβ signaling and could contribute to enhanced phosphorylation of ERK1/2 and matrix production in SSc fibroblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008687 | PMC |
http://dx.doi.org/10.1186/1755-1536-3-25 | DOI Listing |
Sci Rep
January 2025
Harbin Medical University, Harbin, Heilongjiang Province, China.
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database.
View Article and Find Full Text PDFAutoimmun Rev
December 2024
Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China. Electronic address:
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages.
View Article and Find Full Text PDFArthritis Rheumatol
December 2024
Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
Objectives: Little is known on the mechanisms necessary to maintain the physiological adult human skin integrity. This study aims to quantitatively describe anatomical changes in systemic sclerosis (SSc)-skin compared to controls and investigate the underlying mechanisms.
Methods: Skin morphology was histologically assessed in twenty-three SSc-patients, eighteen controls and fifteen patients with hypertrophic scars.
Mol Med
December 2024
Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
Background: ADAM19 (ADAM Metallopeptidase Domain 19) is known to be involved in extracellular matrix (ECM) remodeling, yet its specific function in systemic sclerosis (SSc) fibrosis remains unclear.
Objectives: This study sought to clarify the role and underlying mechanism of ADAM19 in SSc skin fibrosis.
Methods: The expression of ADAM19 was assessed in skin tissues of SSc and wound healing using publicly available transcriptome datasets.
Clin Exp Rheumatol
December 2024
Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Objectives: Systemic sclerosis (SSc), a chronic autoimmune disorder, characterised by local inflammation and progressive fibrosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) has been established as a key mediator in fibrotic processes across multiple organs, primarily through binding to its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the precise role of the TWEAK/Fn14 signalling in SSc pathogenesis remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!