The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3514548DOI Listing

Publication Analysis

Top Keywords

solar wind
16
electric solar
8
wind sail
8
dynamic pressure
8
solar
5
invited article
4
article electric
4
wind
4
sail test
4
test missions
4

Similar Publications

Unraveling climate change-induced compound low-solar-low-wind extremes in China.

Natl Sci Rev

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce.

View Article and Find Full Text PDF

Electrochemical In Situ Characterization Techniques in the Field of Energy Conversion.

Small Methods

January 2025

Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

With the proposal of the "carbon peak and carbon neutrality" goals, the utilization of renewable energy sources such as solar energy, wind energy, and tidal energy has garnered increasing attention. Consequently, the development of corresponding energy conversion technologies has become a focal point. In this context, the demand for electrochemical in situ characterization techniques in the field of energy conversion is gradually increasing.

View Article and Find Full Text PDF

Novel GSIP: GAN-based sperm-inspired pixel imputation for robust energy image reconstruction.

Sci Rep

January 2025

Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.

Missing pixel imputation is a critical task in image processing, where the presence of high percentages of missing pixels can significantly degrade the performance of downstream tasks such as image segmentation and object detection. This paper introduces a novel approach for missing pixel imputation based on Generative Adversarial Networks (GANs). We propose a new GAN architecture incorporating an identity module and a sperm motility-inspired heuristic during filtration to optimize the selection of pixels used in reconstructing missing data.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is regarded as a green and sustainable strategy to address the global freshwater crisis. Nevertheless, it remains challenging to develop a photothermal structure with highly efficient evaporation under omnidirectional illumination. Herein, a three-dimensional multiscale pyramidal array photothermal structure (PAPS) was developed from the inspiration of durian skin.

View Article and Find Full Text PDF

Life cycle analysis (LCA) is a popular tool for determining the environmental impacts of a product in use. The aim of this study is to carry out a life cycle analysis, gate-to-gate, of a mass packaging process using a polyethylene shrinking film with a focus on energy consumption, raw material use and associated emissions, and film post-consumer disposal scenarios. Two different scenarios for the disposal of the shrinking film used in the packaging process were analyzed, namely recycling and landfills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!