Pioneer works in ultrathin magnetic films have shown perpendicular magnetic domains in the demagnetized state. The source of this perpendicular anisotropy is the interface anisotropy developed at the interface. Similar domains could be observed in tetragonally distorted ultrathin films due to the magnetoelastic anisotropy. On the other hand, single-crystalline hexagonal close packed (hcp) Co films when grown epitaxially with the c-axis oriented perpendicular to the film plane may show perpendicular stripe magnetic domains even up to a thickness of about 500 nm. In that case the source of perpendicular anisotropy was the magnetocrystalline anisotropy of bulk Co, which favors the c-axis. In this work, we have grown by radio frequency magnetron sputtering Co films in the thickness range 15-4500 nm. We have used various substrates, such as Corning glass, silicon and Al-foil. The substrate temperature was about 350 K. The films have been found by X-ray diffraction experiments to present various structures and textures depending on the preparation conditions, mainly the Ar-pressure and deposition rate. Stripe- and labyrinth-like domain configurations are observed in films textured along the c-axis, and in films with a mixture of hcp and fcc grains, repectively. Films which show mainly fcc or amorphous structure do not form perpendicular domains. The results are discussed with respect to magnetization loops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2589 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!