A novel egg-shell Pd/PHSNs nano-catalyst was prepared by a wet impregnation method using self-synthesized porous hollow silica nanoparticles (PHSNs) as support and applied in selective hydrogenation of acetylene to remove acetylene from the ethylene feed. By controlling the preparing conditions and calcining temperature, the active metal particles were loaded evenly on the support with a size about 5 nm. Compared with conventional catalysts prepared with solid silica nanoparticles, solid Al2O3 millispheres and a commercial catalyst, the Pd/PHSNs catalyst showed higher acetylene conversion rates at same reaction temperatures, and the porous hollow nano structure of PHSNs allowed smoother diffusion of ethylene molecules within the catalyst matrix so that ethylene could migrate away from the active sites in time to avoid turning into ethane, which resulted in superior ethylene selectivity at high acetylene conversion rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!