Liposomes applications in health care include meanly their ability to carry drugs and genes inside the human body for therapeutic purposes. Nevertheless their applicability can extend far beyond and could be used as analytical tools in order to perform rapid, low-cost, sensitive and specific analyses. Their physical characteristics, such as large internal volume and extended surface area, render them ideal for these applications and specifically for improving the specificity and sensitivity of the analytical assay. The purpose of this study was to develop a simple, stable and low-cost oligonucleotide-tagged liposomal formulation consisting of EggPC and DPPG with a simple to synthesize thiol-reactive conjugate (Mal-SA) incorporated into the lipid bilayer of liposomes. The prepared liposomes, having also the water soluble dye Sulforhodamine B encapsulated in their inner cavity, were characterized in terms of their physicochemical (size, size distribution, zeta-potential, lipid content) and mechanical (morphology, rigidity) properties. The results showed that the final liposomal formulation could be used in the future as analytical tool for detecting pathogen strains of microorganism in biological milieu.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2474DOI Listing

Publication Analysis

Top Keywords

liposomal formulation
8
development characterization
4
characterization oligonucleotide-tagged
4
oligonucleotide-tagged dye-encapsulating
4
dye-encapsulating epc/dppg
4
liposomes
4
epc/dppg liposomes
4
liposomes liposomes
4
liposomes applications
4
applications health
4

Similar Publications

Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles.

View Article and Find Full Text PDF

The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!