Disruption of the breast cancer susceptibility gene Brca1 results in defective lobular-alveolar development in the mammary gland and a predisposition to breast tumourigenesis in humans and in mice. Recent evidence suggests that BRCA1 loss in humans is associated with an expansion of the luminal progenitor cell compartment in the normal breast and tumours with a luminal progenitor-like expression profile. To further investigate the role of BRCA1 in the mammary gland, we examined the consequences of Brca1 loss in mouse mammary epithelial cells in vitro and in vivo. Here, we show that Brca1 loss is associated with defective morphogenesis of SCp2 and HC11 mouse mammary epithelial cell lines and that in the MMTV-Cre Brca1(Co/Co) mouse model of Brca1 loss, there is an accumulation of luminal progenitor (CD61(+)CD29(lo)CD24(+)) cells during pregnancy. By day 1 of lactation, there are marked differences in the expression of 1379 genes, with most significantly altered pathways and networks, including lactation, the immune response and cancer. One of the most differentially expressed genes was the luminal progenitor marker, c-kit. Immunohistochemical analysis revealed that the increase in c-kit levels is associated with an increase in c-kit positivity. Interestingly, an inverse association between Brca1 and c-kit expression was also observed during mammary epithelial differentiation, and small interfering RNA-mediated knockdown of Brca1 resulted in a significant increase in c-kit mRNA levels. We found no evidence that c-kit plays a direct role in regulating differentiation of HC11 cells, suggesting that Brca1-mediated induction of c-kit probably contributes to Brca1-associated tumourigenesis via another cellular process, and that c-kit is likely to be a marker rather than a mediator of defective lobular-alveolar development resulting from Brca1 loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/onc.2010.538 | DOI Listing |
Mol Cancer Ther
January 2025
Tango Therapeutics (United States), Boston, United States.
Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.
View Article and Find Full Text PDFNat Commun
January 2025
Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.
View Article and Find Full Text PDFiScience
January 2025
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across all age groups in 9.1% of sporadic and 18% of familial cases.
View Article and Find Full Text PDFMol Med
January 2025
Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA. Electronic address:
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss-of-function variants in BAP1 are associated with a tumor predisposition syndrome with at least four cancers: uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!