MADOR: a new tool to calculate decrease of effective doses in human after DTPA therapy.

Radiat Prot Dosimetry

Laboratoire de Radiotoxicologie, CEA/DSV/iRCM/SREIT, BP 12, F-91680 Bruyères le Châtel, France.

Published: March 2011

Abstract models have been developed to describe dissolution of Pu/Am/Cm after internal contamination by inhalation or wound, chelation of actinides by diethylene triamine penta acetic acid (DTPA) in different retention compartments and excretion of actinide-DTPA complexes. After coupling these models with those currently used for dose calculation, the modelling approach was assessed by fitting human data available in IDEAS database. Good fits were obtained for most studied cases, but further experimental studies are needed to validate some modelling hypotheses as well as the range of parameter values. From these first results, radioprotection tools are being developed: MAnagement of DOse Reduction after DTPA therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncq429DOI Listing

Publication Analysis

Top Keywords

dtpa therapy
8
mador tool
4
tool calculate
4
calculate decrease
4
decrease effective
4
effective doses
4
doses human
4
human dtpa
4
therapy abstract
4
abstract models
4

Similar Publications

The liver is supplied by a dual blood flow system consisting of the portal vein and hepatic artery. Imaging techniques for diagnosing hepatocellular carcinoma (HCC) have been developed along with blood flow imaging, which visualizes the amount of arterial and portal blood flow. The diagnosis of HCC differentiation is important for early-stage liver cancer screening and determination of treatment strategies.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Liver function affects the prognosis of patients with hepatocellular carcinoma (HCC). This study aimed to investigate the prognostic impact of the functional liver imaging score (FLIS), assessed using gadoxetic acid-enhanced magnetic resonance imaging, on long-term outcomes following hepatectomy for HCC. The FLIS was assessed in 235 patients who underwent initial hepatectomy for HCC.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Background: En bloc kidney transplantation (EBKT) involves transplantation of two kidneys, the aorta, and inferior vena cava from a deceased pediatric donor into an adult recipient. Recent articles have shown that EBKT is associated with excellent long-term allograft performance and patient survival. Developmental differences exist between the two transplanted kidneys after EBKT, and it is crucial to assess split renal function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!