Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043815 | PMC |
http://dx.doi.org/10.1152/ajplung.00177.2010 | DOI Listing |
Environ Int
January 2025
Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia. Electronic address:
Background: Existing environmental quality indices often fail to account for the varying health impacts of different exposures and exclude socio-economic status indicators (SES).
Objectives: To develop and validate a comprehensive Environmental Quality Health Index (EQHI) that integrates multiple environmental exposures and SES to assess mortality risks across Australia.
Methods: We combined all-cause, cardiovascular, and respiratory mortality data (2016-2019) from 2,180 Statistical Areas Level 2 with annual mean values of 12 environmental exposures, including PM, ozone, temperature, humidity, normalized difference vegetation index, night light, road and building density, and socioeconomic status.
JACC Adv
December 2024
Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.
Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.
Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.
ERJ Open Res
January 2025
Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
Introduction: Exposure to environmental factors ( air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Lithium-sulfur (Li-S) batteries, with their superior energy densities, are emerging as promising successors to conventional lithium-ion batteries. However, their widespread adoption is hindered by challenges such as the shuttle effect of polysulfides, which affects discharge capacity and cycling stability. This study explores the transformative potential of atomic layer deposition (ALD) of AlO on commercial PP/PE/PP separators (Celgard), combined with the use of UV ozone exposure to enhance ALD nucleation on the separator surface, to address these challenges.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Environmental exposures such as airborne pollutant exposures and socio-economic indicators are increasingly recognized as important to consider when conducting clinical research using electronic health record (EHR) data or other sources of clinical data such as survey data. While numerous public sources of geospatial and spatiotemporal data are available to support such research, the data are challenging to work with due to inconsistencies in file formats and spatiotemporal resolutions, computational challenges with large file sizes, and a lack of tools for patient- or subject-level data integration.
Results: We developed FHIR PIT (HL7® Fast Healthcare Interoperability Resources Patient data Integration Tool) as an open-source, modular, data-integration software pipeline that consumes EHR data in FHIR® format and integrates the data at the level of the patient or subject with environmental exposures data of varying spatiotemporal resolutions and file formats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!