Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jnnp.2010.218586 | DOI Listing |
Hum Genome Var
January 2025
Progenie Molecular S.L.U, Valencia, Spain.
Two ERLIN2 variants (NM_007175.8:c.660delA and NM_007175.
View Article and Find Full Text PDFEur J Neurol
January 2025
Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia.
Background And Purpose: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive lipid storage disease characterized by abnormal bile acid synthesis. It often presents with systemic and neurological manifestations; however, atypical presentations can lead to significant diagnostic challenges. This case report highlights the diagnostic complexities and management considerations in a patient with an uncommon presentation of CTX.
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!