Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.110.175927DOI Listing

Publication Analysis

Top Keywords

pregnane receptor
12
human hepatocytes
12
hpxr
10
human pregnane
8
constitutive androstane
8
androstane receptor
8
meclizine
8
meclizine hpxr
8
reporter gene
8
gene assay
8

Similar Publications

Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity.

Arch Toxicol

December 2024

Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.

Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance.

View Article and Find Full Text PDF

Clinical efficacy of efgartigimod combined with intravenous methylprednisolone in the acute phase of neuromyelitis optica spectrum disorders.

Orphanet J Rare Dis

December 2024

Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.

Background: Neuromyelitis Optica Spectrum Disorders (NMOSD) comprise a group of autoimmune-mediated, inflammatory, demyelinating central nervous system diseases caused by aquaporin-4 (AQP4) IgG autoantibodies. Efgartigimod is a human IgG Fc fragment that reduces antibody titers by targeting the neonatal Fc receptor (FcRn). This study documents the efficacy of efgartigimod combined with intravenous methylprednisolone (IVMP) in the acute phase of NMOSD.

View Article and Find Full Text PDF

Background: Recent studies suggest a contribution of intrahepatic mineralocorticoid receptor (MR) activation to the development of cirrhosis. As MR blockade abrogates the development of cirrhosis and hypoxia, common during the development of cirrhosis, can activate MR in hepatocytes. But, the impact of non-physiological hepatic MR activation is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!