A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Repair of root resorption 4 and 8 weeks after application of continuous light and heavy forces on premolars for 4 weeks: a histology study. | LitMetric

Introduction: Repair of root resorption cavities has been studied under light microscopy, scanning electron microscopy, and transmission electron microscopy. The aim of this investigation was to demonstrate the use of microcomputed tomography (micro-CT) to assist in the identification of the region of interest for light microscopy preparation. This study also qualitatively illustrated the root resorption craters with 4 or 8 weeks of retention after 4 weeks of continuous light or heavy orthodontic force application.

Methods: Four patients who required bilateral extractions of maxillary first premolars as part of their orthodontic treatment were divided into 2 groups (groups I and II) of 2. The maxillary left and right first premolars were loaded with light (25 g) or heavy (225 g) orthodontic force for 4 weeks. After 4 or 8 weeks of retention, the maxillary first premolars were extracted. The extracted teeth were investigated with micro-CT. By using 3-dimensional images created by the micro-CT, the largest resorption craters on the buccal and lingual sides were identified. Parasagittal sections of these resorption craters were studied histologically under hematoxylin and eosin staining.

Results: The use of micro-CT improved the efficiency and accuracy of histologic techniques. Comparatively, less root resorption was repaired by new cementum after heavy orthodontic force application and short retention time. The reparative processes seemed to depend on time, with longer retention time yielding the most amount of repair. Reparative cementum was a mixture of acellular and cellular cementum. Reparative processes seemed to commence at the central part of the resorption cavity and expand to the periphery.

Conclusions: Root resorption cavities have the potential to repair regardless of the orthodontic force magnitude. Correlative microscopy with micro-CT and conventional light microscopy adds a new dimension to current root resorption investigation techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2009.01.029DOI Listing

Publication Analysis

Top Keywords

root resorption
24
orthodontic force
16
light heavy
12
light microscopy
12
resorption craters
12
resorption
9
repair root
8
continuous light
8
resorption cavities
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!