Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(10)62213-1 | DOI Listing |
JMIR Form Res
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan, 81 562-93-2476, 81 562-93-3079.
Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Chinese University of China, Shatin, Hong Kong Special Administrative Region, China.
Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany.
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!