Oxidative stress has been implicated in the etiology of neurodegenerative disorders with α-synuclein pathology. Lipid peroxidation products such as 4-oxo-2-nonenal (ONE) and 4-hydroxy-2-nonenal (HNE) can covalently modify and structurally alter proteins. Herein, we have characterized ONE- or HNE-induced α-synuclein oligomers. Our results demonstrate that both oligomers are rich in β-sheet structure and have a molecular weight of about 2000 kDa. Atomic force microscopy analysis revealed that ONE-induced α-synuclein oligomers were relatively amorphous, with a diameter of 40-80 nm and a height of 4-8 nm. In contrast, the HNE-induced α-synuclein oligomers had a protofibril-like morphology with a width of 100-200 nm and a height of 2-4 nm. Furthermore, neither oligomer type polymerized into amyloid-like fibrils despite prolonged incubation. Although more SDS and urea stable, because of a higher degree of cross-linking, ONE-induced α-synuclein oligomers were less compact and more sensitive to proteinase K treatment. Finally, both ONE- and HNE-induced α-synuclein oligomers were cytotoxic when added exogenously to a neuroblastoma cell line, but HNE-induced α-synuclein oligomers were taken up by the cells to a significantly higher degree. Despite nearly identical chemical structures, ONE and HNE induce the formation of off-pathway α-synuclein oligomers with distinct biochemical, morphological, and functional properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.027DOI Listing

Publication Analysis

Top Keywords

α-synuclein oligomers
32
hne-induced α-synuclein
16
α-synuclein
9
oligomers
9
lipid peroxidation
8
peroxidation products
8
products 4-oxo-2-nonenal
8
4-oxo-2-nonenal 4-hydroxy-2-nonenal
8
oligomers distinct
8
distinct biochemical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!