DNA methylation and histone acetylation are major epigenetic modifications in gene silencing. In our previous research, we found that the methylated oligonucleotide (SurKex) complementary to a region of promoter of survivin could induce DNA methylation in a site-specific manner leading to survivin silencing. Here, we further studied the role of histone acetylation in survivin silencing and the relationship between histone acetylation and DNA methylation. First we observed the levels of histone H4 and H4K16 acetylation that were decreased after SurKex treatment by using the chromatin immunoprecipitation (ChIP) assay. Next, we investigated the roles of histone acetylation and DNA methylation in survivin silencing after blockade of histone deacetylation with Trichostatin A (TSA). We assessed survivin mRNA expression by RT-PCR, measured survivin promoter methylation by bisulfite sequencing and examined the level of histone acetylation by the ChIP assay. The results showed that histone deacetylation blocked by TSA reversed the effects of SurKex on inhibiting the expression of survivin mRNA, inducing a site-specific methylation on survivin promoter and decreasing the level of histone acetylation. Finally, we examined the role of histone acetylation in the expression of DNA methyltransferase 1 (DNMT1) mRNA. The results showed that histone deacetylation blocked by TSA reversed the increasing effect of histone deacetylation on the expression of survivin mRNA. This study suggests that histone deacetylation guides SurKex-induced DNA methylation in survivin silencing possibly through increasing the expression of DNMT1 mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.11.105 | DOI Listing |
Cancer Chemother Pharmacol
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.
Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.
Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.
Nan Fang Yi Ke Da Xue Xue Bao
January 2025
Hunan University of Chinese Medicine, Changsha 410208, China.
Objectives: To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.
Methods: MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined.
Theranostics
January 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!