Anionic ferrofluid was encapsulated in 200nm-diameter liposomes. The process involved phase-reverse evaporation followed by sequential extrusion. Magnetoliposomes were characterized by transmission electron microscopy, Doppler laser electrophoresis, SQUID magnetometry, dynamic light scattering and iron content by atomic absorption spectrophotometry. The absence of hysteresis of the magnetic power of particles at room temperature is characteristic of a material with superparamagnetic properties. The encapsulation efficiency was determined for several iron/phospholipid ratios, and this parameter ranged from 0.016 to 0.024mg iron per mmole of phospholipids, depending on the initial magnetite concentration. In comparison with magnetoliposomes that were obtained solely by extrusion, this method afforded significantly better encapsulation (P=0.0002). Magnetic particles were intravenously administered to healthy or inflammation-induced mice. After 1h, the content of iron was determined in exudates, liver, spleen and plasma. Magnetoliposomes accumulated in the exudates collected from the inflammation site, which suggests that these particles could be loaded with the drugs needed to treat some inflammatory processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2010.11.044DOI Listing

Publication Analysis

Top Keywords

sequential extrusion
8
magnetoliposomes
4
magnetoliposomes prepared
4
prepared reverse-phase
4
reverse-phase sequential
4
extrusion characterization
4
characterization possibilities
4
possibilities treatment
4
treatment inflammation
4
inflammation anionic
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

This paper presents a comprehensive investigation of the manufacturing of itraconazole (ITZ) amorphous solid dispersions (ASDs) with Kolllidon® VA64 (KVA64) using hot-melt extrusion (HME) and in-line process monitoring, employing a Quality by Design (QbD) approach. A sequential Design of Experiments (DoE) strategy was utilized to optimize the manufacturing process, with in-line UV-Vis spectroscopy providing real-time monitoring. The first DoE used a fractional factorial screening design to evaluate critical process parameters (CPPs), revealing that ITZ concentration had the most significant impact on the product quality attributes.

View Article and Find Full Text PDF

As the critical components in hydrogen refueling, storage, and transportation systems, the degradation and failure of rubber O-ring seals under a high-pressure (HP) hydrogen environment (up to 100 MPa) directly affect hydrogen energy safety. Clarifying the interaction mechanism of hydrogen diffusion and the mechanical properties of rubber seals is essential for HP hydrogen infrastructure. A hydrogen diffusion-mechanical sequential numerical model is built to investigate the sealing performance and hydrogen diffusion behaviors of rubber seals using ABAQUS software.

View Article and Find Full Text PDF
Article Synopsis
  • * Both treatments improved the viscosity, shear stress, and overall emulsion stability of WPI, with the greatest enhancement observed in the combination of cold extrusion and cysteine (Cys-CWPI).
  • * Cys-CWPI also exhibited increased inhibitory effects on α-glucosidase and xanthine oxidase, suggesting potential benefits for developing food products aimed at lowering blood sugar and uric acid levels.
View Article and Find Full Text PDF

Herein, we report an azobis(isobutyronitrile) (AIBN)-promoted radical α-cyanation of formed imine under atmospheric O. This oxidative radical addition (ORA) procedure proceeds with the sequential homocleavage of AIBN, extrusion of N, and capture of O toward an O-centered radical, which is converted to a cyano radical by β-scission. Then, the insertion of the cyano radical into the imine C═N bond forms an aminyl radical, leading to α-cyano imine after 1,2-hydrogen atom transfer (HAT) and H abstraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!