Purinergic receptors are present in the lateral parabrachial nucleus (LPBN), a pontine structure involved in the control of sodium intake. In the present study, we investigated the effects of α,β-methyleneadenosine 5'-triphosphate (α,β-methylene ATP, selective P2X purinergic agonist) alone or combined with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, P2X purinergic antagonist) or suramin (non-selective P2 purinergic antagonist) injected into the LPBN on sodium depletion-induced 1.8% NaCl intake. Male Holtzman rats with stainless steel cannulas implanted into the LPBN were used. Sodium depletion was induced by treating rats with the diuretic furosemide (20mg/kg of body weight) followed by 24h of sodium-deficient diet. Bilateral injections of α,β-methylene ATP (2.0 and 4.0nmol/0.2μl) into the LPBN increased sodium depletion-induced 1.8% NaCl intake (25.3±0.8 and 26.5±0.9ml/120min, respectively, vs. saline: 15.2±1.3ml/120min). PPADS (4nmol/0.2μl) alone into the LPBN did not change 1.8% NaCl intake, however, pretreatment with PPADS into the LPBN abolished the effects of α,β-methylene ATP on 1.8% NaCl intake (16.9±0.9ml/120min). Suramin (2.0nmol/0.2μl) alone into the LPBN reduced sodium depletion-induced 1.8% NaCl intake (5.7±1.9ml/120min, vs. saline: 15.5±1.1ml/120min), without changing 2% sucrose intake or 24h water deprivation-induced water intake. The combination of suramin and α,β-methylene ATP into the LPBN produced no change of 1.8% NaCl intake (15.2±1.2ml/120min). The results suggest that purinergic P2 receptor activation in the LPBN facilitates NaCl intake, probably by restraining LPBN mechanisms that inhibit sodium intake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2010.11.075DOI Listing

Publication Analysis

Top Keywords

nacl intake
32
18% nacl
24
sodium depletion-induced
16
αβ-methylene atp
16
intake
12
depletion-induced 18%
12
lpbn
10
lateral parabrachial
8
parabrachial nucleus
8
nacl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!