β-Cell dysfunction under hyperglycemic stress: a molecular model.

J Diabetes Sci Technol

Department of Pharmacology, University of California Davis, Davis, California 95616, USA.

Published: November 2010

Background: Pancreatic β cells respond to chronic hyperglycemia by increasing the synthesis of proinsulin (the precursor molecule of insulin). Prolonged stimulations lead to accumulation of misfolded proinsulin in the secretory track, delayed insulin secretion, and release of unprocessed proinsulin in the blood. The molecular mechanisms connecting the state of endoplasmic reticulum overloading with the efficiency of proinsulin to insulin conversion remain largely unknown.

Methods: Computer simulations can help us to understand mechanistic features of the β-cell secretory defect and to design experiments that may reveal the molecular basis of this dysfunction. We used molecular crowding concepts and statistical thermodynamics to dissect possible biophysical mechanisms underlying the alteration of the secretory track of β cells and to elucidate the chemistry aspects of the secretory dysfunction. We then used numerical algorithms to relate the degree of biophysical alteration of these secretory compartments with the change of proinsulin to insulin conversion rate.

Results: Our computer simulations suggest that overloading the endoplasmic reticulum initiates downstream molecular crowding effects that affect protein translational mechanisms, including proinsulin misfolding, delayed packing of proinsulin in secretory vesicles, and low kinetic coefficient of proinsulin to insulin conversion.

Conclusions: Together with previous experimental data, the present study can help us to better understand chemistry aspects related to the secondary translational mechanisms in β cells and how hyperglycemic stress can alter secretory function. This can give a further impetus to the development of novel software to be used in a clinical setup for prediction and assessment of diabetic states in susceptible patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005055PMC
http://dx.doi.org/10.1177/193229681000400619DOI Listing

Publication Analysis

Top Keywords

proinsulin insulin
12
hyperglycemic stress
8
proinsulin
8
proinsulin secretory
8
secretory track
8
endoplasmic reticulum
8
insulin conversion
8
computer simulations
8
molecular crowding
8
alteration secretory
8

Similar Publications

Aim: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterised by absolute or relative insufficiency of insulin secretion. The alkaloids from Rhizoma coptidis have potential hypoglycemic effects. Epiberberine (EPI), a protoberberine alkaloid extracted from Rhizome coptidis, has been found to regulate lipid metabolism.

View Article and Find Full Text PDF

Objective: This study aims to investigate the associations between rs724030 A>G variant and prediabetes risk, along with their correlations with clinical features, including plasma glucose and serum insulin levels during oral glucose tolerance test (OGTT), islet function, insulin resistance, and plasma lipid levels. In particular, we investigated whether there are sex dimorphisms in the impact of this variant on islet function/insulin resistance.

Methods: We included 3415 glucose-tolerant healthy and 1744 prediabetes individuals based on OGTT.

View Article and Find Full Text PDF

Mushrooms and fenugreek are widely used to reduce hyperglycemia, and fenugreek is also used as a culinary ingredient to enhance flavor and aroma. This study is aimed at investigating the underlying mechanisms of the hypoglycemic effects of mushrooms and fenugreek in a Type 2 diabetic rat model. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) functions to reduce hyperglycemia through insulin-independent pathways and protects beta-cells.

View Article and Find Full Text PDF

Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.

View Article and Find Full Text PDF

Background: Insulin resistance is tightly related to cognition; however, the causal association between them remains a matter of debate. Our investigation aims to establish the causal relationship and direction between insulin resistance and cognition, while also quantifying the mediating role of brain cortical structure in this association.

Methods: The publicly available data sources for insulin resistance (fasting insulin, homeostasis model assessment beta-cell function and homeostasis model assessment insulin resistance, proinsulin), brain cortical structure, and cognitive phenotypes (visual memory, reaction time) were obtained from the MAGIC, ENIGMA, and UK Biobank datasets, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!