A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inkjet printing of multi-walled carbon nanotube/polymer composite thin film for interconnection. | LitMetric

In this paper, multi-walled carbon nanotube (MWCNT) ink was selectively patterned by inkjet printing on substrates to form conductive traces and electrodes for interconnection application. MWCNT was firstly functionalized using concentrated acid and dispersed in deionized water to form a colloidal solution. Various concentrations of MWCNT were formulated to test the stability of the solution. The printability of the MWCNT ink was examined against printing temperature, ink concentration and ink droplet pitch. Rheological properties of the ink were determined by rheometer and sessile drop method. The electrical conductivity of the MWCNT pattern was measured against multiple printing of MWCNT on the same pattern (up to 10 layers). While single layer printing pattern exhibited highest resistance, the CNT entangled together and formed a random network with more printed layers has higher conductivity. The electrical properties of the printed film was compared to a composite ink of CNT and conducting polymer (CNT ink was mixed with conductive polymer solution, Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT:PSS)). Scanning electron microscopy (SEM) was used to observe the surface structure and atomic force microscopy (AFM) was used to study the morphology of the printed film under different conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.1706DOI Listing

Publication Analysis

Top Keywords

inkjet printing
8
multi-walled carbon
8
mwcnt ink
8
mwcnt pattern
8
printed film
8
ink
7
mwcnt
6
printing multi-walled
4
carbon nanotube/polymer
4
nanotube/polymer composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!