This paper describes a method for size-controlled synthesis of Pt nanoparticles and their attachment to the sidewalls of multiwall carbon nanotubes (CNTs) by self-regulated reduction of sodium n-dodecyl sulfate (SDS), without surface pretreatment. The size of the Pt nanoparticles is controlled by adjusting the concentration of SDS. When Pt/CNTs are heated to 500 degrees C in N2 atmosphere, Pt nanochains are formed on the CNTs; some of these nanochains contain small islands. Electrochemical measurements confirm that the electroactivities of the Pt/CNT nanocatalysts increase with a decrease in the size of the Pt nanoparticles. Additionally, comparing with the heated Pt/CNT nanocatalysts containing smooth Pt nanochains, the heated Pt/CNT nanocatalysts containing Pt nanochains with small Pt islands show higher electrocatalysis activities and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.1680 | DOI Listing |
Inorg Chem
February 2024
State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
Synergistic monometallic nanocatalysts have attracted much attention due to their high intrinsic activity properties. However, current synergistic monometallic nanocatalysts tend to suffer from long reaction paths due to restricted nanoscale interfaces. In this paper, we synthesized the interstitial compound N-Pt/CNT with monometallic atomic interfaces.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2024
Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China.
H generation from methanol-water mixtures often requires high pressure and high temperature (200-300 °C). However, CO can be easily generated and poison the catalytic system under such high temperature. Therefore, it is highly desirable to develop the efficient catalytic systems for H production from methanol at room temperature, even at sub-zero temperatures.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2016
Nanotech Research Lab, Department of Chemistry, University College of Engineering Villupuram (A Constituent College of Anna University, Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India. Electronic address:
This present study reports the development of novel catalyst support of amine terminated cyclophosphazene/cyclophosphazene/hexafluoroisopropylidenedianiline-carbon nanotube (ATCP/CP/HFPA-CNT) composite. The ATCP/CP/HFPA-CNT composite has been used as a catalyst support for platinum (Pt) and platinum-gold (Pt-Au) nanoparticles towards electrooxidation of methanol in alkaline medium. The obtained anode materials were characterized by X-ray diffraction, transmission electron microscope and energy dispersive X-ray analysis.
View Article and Find Full Text PDFChem Commun (Camb)
February 2014
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
We demonstrate an unprecedented H2 generation activity in the hydrolytic dehydrogenation of ammonia borane over acid oxidation- and subsequent high temperature-treated CNT immobilized Pt nanocatalysts to combine the merits of defect-rich and oxygen group-deficient surfaces and unique textural properties of supports as well as optimum particle size of Pt.
View Article and Find Full Text PDFLangmuir
May 2011
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
A universal strategy was developed for the preparation of high-temperature-stable carbon nanotube (CNT) -supported metal nanocatalysts by encapsulation with a mesoporous silica coating. Specifically, we first showed the design of one novel catalyst, Pt(@)CNT/SiO(2), with a controllable mesoporous silica coating in the range 11-39 nm containing pores ≈3 nm in diameter. The hollow porous silica shell offers a physical barrier to separate Pt nanoparticles from contact with each other, and at the same time the access of reactant species to Pt was not much affected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!