Scanning probe microscope lithography at the micro- and nano-scales.

J Nanosci Nanotechnol

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.

Published: July 2010

Scanning probe microscopy (SPM)-based lithography at the micro- and nano-scales is presented. Our method in SPM local oxidation involves two SPM tips, one having a robust blunt tip, a "micrometer tip," and the other having a sharp tip, a "nanometer tip." In tapping-mode SPM local oxidation experiments, Si oxide wires with sub-10 nm resolution were produced by precisely tuning the dynamic properties of the nanometer tip such as drive amplitude and quality factor. On the other hand, in order to perform large-scale oxidation, SPM tip with a contact area of microm2, which is about 10(4) times larger than that of the conventional nanometer tip, was prepared. We propose and demonstrate a method of performing micrometer-scale SPM local oxidation using the micrometer tip under contact-mode operation. The width of the Si oxide produced was clearly determined by the contact length of the tip. Furthermore, we explore the possibility of performing the sub-20 nm lithography of Si surfaces using SPM scratching with a diamond-coated tip. The influence of various scan parameters on the groove size was investigated. The groove size could be precisely controlled by the applied force, scan direction, and the number of scan cycles. There is no effect of the scan speed on the groove size. It is concluded that high-speed nanolithography can be achieved without the degradation of patterns by SPM scratching. SPM-based lithography has the advantage of being able to fabricate a desired structure at an arbitrary position on a surface and plays an important role for bridging the gap between micro- and nano-scales.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2359DOI Listing

Publication Analysis

Top Keywords

micro- nano-scales
12
spm local
12
local oxidation
12
groove size
12
scanning probe
8
lithography micro-
8
spm-based lithography
8
spm scratching
8
spm
7
probe microscope
4

Similar Publications

A microgripper based on electrothermal Al-SiO bimorphs.

Microsyst Nanoeng

December 2024

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.

Microgrippers are essential for assembly and manipulation at the micro- and nano-scales, facilitating important applications in microelectronics, MEMS, and biomedical engineering. To guarantee the safe handling of delicate materials and micro-objects, a microgripper needs to be designed to operate with exceptional precision, rapid response, user-friendly operation, strong reliability, and low power consumption. In this study, we develop an electrothermal actuated microgripper with Al-SiO bimorphs as the primary structural element.

View Article and Find Full Text PDF

Piezoelectricity, a fundamental property of perovskite ferroelectrics, endows the materials at the heart of electromechanical systems spanning from macro to micro/nano scales. Defect engineering strategies, particularly involving heterovalent trace impurities and derived vacancies, hold great potential for adjusting piezoelectric performance. Despite the prevalent use of defect engineering for modification, a comprehensive understanding of the specific features that positively impact material properties is still lacking, this knowledge gap impedes the advancement of a universally applicable defect selection and design strategy.

View Article and Find Full Text PDF

Graphene oxide (GO) possesses specific properties that are revolutionizing materials science, with applications extending from flexible electronics to advanced nanotechnology. A key method for harnessing GO's potential is its laser-induced reduction, yet the exact mechanisms - photothermal versus photochemical effects - remain unclear. Herein, we discover the dominant role of photochemical reactions in the laser reduction of GO under visible light, challenging the prevailing assumption that photothermal effects are dominant.

View Article and Find Full Text PDF

Understanding lignocellulosic biomass resistance to enzymatic deconstruction is crucial for its sustainable conversion into bioproducts. Despite scientific advances, quantitative morphological analysis of plant deconstruction at cell and tissue scales remains under-explored. In this study, an original pipeline is devised, involving four-dimensional (space  + time) fluorescence confocal imaging, and a novel computational tool, to track and quantify deconstruction at cell and tissue scales.

View Article and Find Full Text PDF

Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment.

Natl Sci Rev

October 2024

Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.

Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!