According to Lenz's law, the magnetic field from the oscillating magnetic probe will induce out-of-plane surface magnetic domains (SMDs) from the in-plane magnetization at the locally tapped points on a ferromagnetic La(0.7)Sr(0.3)MnO3 (LSMO) thin film. It was possible to control and manipulate the out-of-plane SMDs by varying the tapping intervals and changing the scanning direction. We also found that the anisotropic stresses from the out-of-plane SMDs caused the appearance of large-area straight striped domain structures on the order of several micrometers. Smaller oscillating magnetic probe tapping intervals produced larger periods (or widths) of the straight striped domain structure.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2358DOI Listing

Publication Analysis

Top Keywords

surface magnetic
8
magnetic domains
8
oscillating magnetic
8
magnetic probe
8
out-of-plane smds
8
tapping intervals
8
straight striped
8
striped domain
8
magnetic
5
creation manipulation
4

Similar Publications

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Mechanosynthesis of fluorescent magnetic alumina for latent fingerprint detection.

J Colloid Interface Sci

January 2025

iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

A green approach towards the synthesis of both conventional and magnetic fluorescent powders for revealing latent fingerprints (FPs) is disclosed. The powders formulation is based on a biodegradable matrix and fluorescent dyes extracted from commercial felt-tip markers. Two classes of powders are described: one with a fluorescent component, and other with both fluorescent and magnetic components.

View Article and Find Full Text PDF

Synthesis of a fluorophilic magnetic microporous organic network for selective enrichment of fipronil and ethiprole in milk and egg samples.

J Chromatogr A

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Considering the widespreadly use, large consumption, and serious environmental and health threats of phenylpyrazole insecticides (PPIs), development of a selective and sensitive method for accurate detection of their residuals in food samples is of great significance and challenging. Herein, depending on the hydrophobic and F-containing characteristics of PPIs, a novel fluorinated magnetic microporous organic network (FMMON) was designed and prepared for efficient and selective magnetic solid-phase extraction (MSPE) of two typical PPIs (fipronil and ethiprole) from milk and egg samples before the HPLC-UV determination. FMMON owned large specific surface area, multiple interaction sites, excellent magnetic separation performance and stability and exhibited good extraction and selectivity for fipronil and ethiprole through the specific F-F, hydrogen bonding, hydrophobic, and π-π interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!