Gas-phase cleavage and dephosphorylation of universal linker-bound oligodeoxynucleotides.

Nucleosides Nucleotides Nucleic Acids

Stanford Genome Technology Center, Stanford University, 855 S. California Ave, Palo Alto, CA 94304, USA.

Published: November 2010

While base-specific support is commonly used for single-column oligodeoxynucleotide synthesis, the universal linker is critical for high-throughput synthesis of potentially thousands of samples in a single run. Here, we report conditions for cleavage and complete dephosphorylation of two commercial universal linkers, UnySupport and UnyLinker, processed in the gas phase (NH(3)) using our custom device. First, we compared the average yield of T10mers over time (15, 30, 60, 120, and 240 minutes, 40 psi, 80°C and 90°C). For samples processed with water added prior to incubation, we discovered a substantial increase in yield compared to those left dry (up to 55%). This was also the case for samples subjected to increases in chamber pressure (10, 20, 30 and 40 psi, 120 minutes, 80°C and 90°C). Next, we compared the effects of increased temperature, pressure and incubation times on the rates of dephosphorylation. We found the optimum conditions to be either 10 psi, 120 minutes at 80°C or 60 minutes at 90°C; in both cases, water added to columns prior to incubation had a substantial effect on rate of reaction as well as overall yield compared with those left dry. Finally, performance between the two linkers was similar enough to conclude each fulfills the desired requirements for mainstream, high-throughput oligodeoxynucleotide cleavage/deprotection and dephosphorylation in the gas phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815660PMC
http://dx.doi.org/10.1080/15257770.2010.534757DOI Listing

Publication Analysis

Top Keywords

gas phase
8
80°c 90°c
8
prior incubation
8
yield compared
8
compared left
8
left dry
8
psi 120
8
120 minutes
8
minutes 80°c
8
gas-phase cleavage
4

Similar Publications

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

Exploring Singlet Carbyne Anions and Related Low-Valent Carbon Species Utilizing a Cyclic Phosphino Substituent.

Acc Chem Res

January 2025

Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

ConspectusThe advancement of synthetic methodologies is fundamentally driven by a deeper understanding of the structure-reactivity relationships of reactive key intermediates. Carbyne anions are compounds featuring a monovalent anionic carbon possessing four nonbonding valence electrons, which were historically confined to theoretical constructs or observed solely within the environment of gas-phase studies. These species possess potential for applications across diverse domains of synthetic chemistry and ancillary fields.

View Article and Find Full Text PDF

Low-energy electron driven reactions in 2-bromo-5-nitrothiazole.

J Chem Phys

January 2025

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.

Thiazole derivatives are biologically relevant molecules, used also in pharmaceutical applications. Herein, we report results for electron attachment to 2-bromo-5-nitrothiazole (BNT) in the gas phase. Employing two crossed electron-molecule beam experiments, we determined the efficiency curves of various fragment anions as a function of the initial electron energy between about 0 and 10 eV as well as the emission angle and kinetic energy distributions of Br- and NO2- ions formed from a resonance near 4 eV.

View Article and Find Full Text PDF

Hydroxysilylene (HSi-OH) in the gas phase.

J Chem Phys

January 2025

Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA.

The hydroxysilylene (HSiOH) molecule has been spectroscopically identified in the gas phase for the first time. This highly reactive species was produced in a twin electric discharge jet using separate precursor streams of 16O2/18O2 and Si2H6/Si2D6, both diluted in high pressure argon. The strongest and most stable laser induced fluorescence (LIF) signals were obtained by applying an electric discharge to each of the precursor streams and then merging the discharge products just prior to expansion into vacuum.

View Article and Find Full Text PDF

The intramolecular migration of three hydrogen atoms from one moiety of a gaseous radical cation to the other prior to fragmentation is an extremely rare type of redox reaction. Within the scope of this investigation, this scenario requires an ionized but electron-rich arene acceptor bearing a para-(3-hydroxyalkyl) residue. The precise mechanism of such unidirectional 3H transfer processes, including the order of the individual H transfer steps, has remained unclear in spite of previous isotope labelling and recent infrared ion spectroscopy (IRIS) studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!