Association of a LSP1 gene rs3817198T>C polymorphism with breast cancer risk: evidence from 33,920 cases and 35,671 controls.

Mol Biol Rep

Department of Oncology, Kunshan First People's Hospital, Affiliated to Jiangsu University, No. 91, Qianjin Road, Kunshan, 215300 Jiangsu, China.

Published: October 2011

Published data on the association between lymphocyte-specific protein 1 (LSP1) rs3817198T>C polymorphism and breast cancer risk are inconclusive. Hence, we conducted a meta-analysis of the LSP1 gene and risk of breast cancer to obtain the most reliable estimate of the association. PubMed, Embase and Web of Science databases were searched. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were extracted and pooled to assess the strength of the association between the LSP1 rs3817198T>C polymorphism and risk of breast cancer. A total of seven eligible studies including 33,920 cases and 35,671 controls based on the search criteria were involved in this meta-analysis. The distributions of genotypes in the controls were all in agreement with Hardy-Weinberg equilibrium. We observed that the LSP1 rs3817198T>C polymorphism was significantly correlated with breast cancer risk when all studies were pooled into the meta-analysis (the allele contrast model: OR = 1.06, 95% CI = 1.04-1.08; the homozygote codominant: OR = 1.14, 95% CI = 1.01-1.28). In the stratified analysis by ethnicity, significant association was observed in Caucasians for CC versus TT homozygote codominant model (OR = 1.25; 95% CI = 1.03-1.52) and for the recessive model (OR = 1.22; 95% CI = 1.02-1.47). There was significant association observed in Africans for CC versus TT homozygote codominant model (OR = 0.45; 95% CI = 0.22-0.92) and for the recessive model (OR = 0.43; 95% CI=0.22-0.88). Also, significant association was observed in mixed ethnicities for CC versus TT homozygote codominant model (OR = 1.12; 95% CI = 1.05-1.19). When stratified by study design, statistically significantly elevated risk was found in nested case-control studies (CC vs. TT: OR = 1.12, 95% CI = 1.05-1.19). But no significant association was observed for all comparison models between LSP1 rs3817198T>C polymorphism and breast cancer risk in hospital-based and people-based studies. When stratified by BRCA1 mutation carriers status, statistically significantly elevated risk was found in this meta-analysis (the allele contrast model: OR = 1.07, 95% CI = 1.01-1.14; the dominant model: OR = 1.09, 95% CI = 1.00-1.18). And significant association was found in the BRCA2 mutation carriers in the allele contrast (OR = 1.11, 95% CI = 1.03-1.20), the homozygote codominant (OR = 1.23, 95% CI = 1.04-1.47), the heterozygote codominant (OR = 1.12, 95% CI = 1.00-1.25) and the dominant models (OR = 1.14, 95% CI = 1.03-1.27). There was significant association between LSP1 rs3817198T>C polymorphism and breast cancer risk in BRCA1 and BRCA2 positive cohort in all comparison models (the allele contrast model: OR = 1.08, 95% CI = 1.03-1.13; CC vs. TT: OR = 1.16, 95% CI = 1.05-1.29; TC vs. TT: OR = 1.09, 95% CI = 1.01-1.16; the dominant model: OR = 1.10, 95% CI = 1.03-1.17; the recessive model: OR = 1.12, 95% CI = 1.01-1.23). In conclusion, this meta-analysis suggests that the LSP1 rs3817198T>C polymorphism is a low-penetrant risk factor for developing breast cancer but may not be in Africans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-010-0603-3DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
rs3817198t>c polymorphism
28
lsp1 rs3817198t>c
24
cancer risk
20
95%
20
homozygote codominant
20
polymorphism breast
16
allele contrast
16
association observed
16
112 95%
16

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Quality of life for patients on oncology treatments in the Kingdom of Saudi Arabia: a systematic review.

J Pharm Policy Pract

January 2025

Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.

Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!