Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species.

Arch Environ Contam Toxicol

Department of Earth and Environment, Southeast Environmental Research Center, Florida International University, North Miami, 33181, USA.

Published: February 2011

Endosulfan sulfate is a persistent environmental metabolite of endosulfan, an organochlorine insecticide-acaricide presently registered by the United States Environmental Protection Agency. There is, however, limited acute fish toxicity data for endosulfan sulfate. This study determines the acute toxicity (LC₅₀s and LC₁₀s) of endosulfan sulfate to three inland Florida native fish species (mosquitofish [Gambusia affinis]; least killifish [Heterandria formosa]; and sailfin mollies [Poecilia latipinna]) as well as fathead minnows (Pimephales promelas). Ninety-six-h acute toxicity tests were conducted with each fish species under flow-through conditions. For all of the above-mentioned fish species, 96-h LC₅₀ estimates ranged from 2.1 to 3.5 μg/L endosulfan sulfate. The 96-h LC₁₀ estimates ranged from 0.8 to 2.1 μg/L endosulfan sulfate. Of all of the fish tested, the least killifish appeared to be the most sensitive to endosulfan sulfate exposure. The above-mentioned data were combined with previous acute toxicity data for endosulfan sulfate and freshwater fish for an effects analysis. The effects analysis estimated hazardous concentrations expected to exceed 5, 10, and 50% of the fish species' acute LC₅₀ or LC₁₀ values (HC₅, HC₁₀, and HC₅₀). The endosulfan sulfate freshwater-fish acute tests were also compared with the available freshwater-fish acute toxicity data for technical endosulfan. Technical endosulfan is a mixture of α- and β-endosulfan. The LC₅₀s had a wider range for technical endosulfan, and their distribution produced a lower HC₁₀ than for endosulfan sulfate. The number of freshwater-fish LC₅₀s for endosulfan sulfate is much smaller than the number available for technical endosulfan, reflecting priorities in examining the toxicity of the parent compounds of pesticides. The toxicity test results and effects analyses provided acute effect values for endosulfan sulfate and freshwater fish that might be applied in future screening level ecologic risk assessments. The effects analyses also discussed several deficiencies in conventional methods for setting water-quality criteria and determining ecologic effects from acute toxicity tests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-010-9623-1DOI Listing

Publication Analysis

Top Keywords

endosulfan sulfate
48
acute toxicity
24
endosulfan
17
fish species
16
technical endosulfan
16
effects analysis
12
sulfate
12
sulfate freshwater
12
freshwater fish
12
toxicity data
12

Similar Publications

Erhai Lake, a vital drinking water source for Dali, a highland agricultural city, faces potential contamination from pesticide residues, yet limited studies have assessed their distribution and impacts. This study investigates the occurrence, transport, partitioning, and ecological risks of pesticides in the lake's dissolved phase (DP), suspended particulate matter (SPM), and sediment (SD) samples collected from 22 sites across different seasons. The results showed significant temporal variations across different media, with spatial variations driven by crop-related patterns.

View Article and Find Full Text PDF

Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark.

View Article and Find Full Text PDF

An increasing number of chemicals found in the environment potentially pose a threat to organisms such as fish. Models for risk assessment are vital resources that enable possible measurements of the hazards associated with chemical exposure. Traditional monitoring techniques and experimental procedures, however, are unable to keep up with the compounds that are becoming more and more implicated in environmental problems.

View Article and Find Full Text PDF

Pesticide levels in shrimp on Mexican coasts.

Int J Environ Health Res

August 2024

Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Tepic, Nayarit, México.

Article Synopsis
  • - The review examines pesticide residues in shrimp from Mexican coasts, highlighting that organochlorine pesticides like α-endosulfan and heptachlor are most commonly detected.
  • - The Northwest region of Mexico shows the highest concentrations of these residues, raising concerns about the safety of shrimp production in key areas.
  • - Due to outdated data (19 years old), the study emphasizes the need for updated evaluations using reliable methods to assess pesticide levels and their potential risks to consumers.
View Article and Find Full Text PDF

Organochlorine pesticides (OCPs) are persistent organic compounds found in aquatic environments worldwide. A well-validated and well-established analytical method is crucial for detecting OCPs in the environment. In this study, an analytical method for quantifying OCPs in water was developed and evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!