Rapid and efficient methods to assess nanoparticle toxicity are desired in current research. Here we showed that Escherichia coli labeled by green fluorescent protein can be a good model bacterium for assessing acute toxicity of TiO(2) (about 50% inhibition ratios after 135 min exposure). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that TiO(2) nanoparticles (NPs) can influence certain protein expression in the recombinant bacterium, and the obvious effects in repressed expression and elevated expression were observed in 30/40, 10/20 μg mL(-1) treated cells, respectively. However, the GFP expression (27 kD) was not influenced by introduced TiO(2) NPs. The change of the fluorescence intensity may be caused by the damage in folding and chromophore formation of the GFP post-translational modification due to generated reactive oxygen species. Furthermore, TiO(2) NPs at higher concentrations decreased their toxicity because of aggregation. 20 μg mL(-1) humic acid (HA) introduced to the medium can decrease the fluorescent inhibition owing to the barrier of steric hindrance it provides between NPs and cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0em00499e | DOI Listing |
ACS Omega
January 2025
Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.
View Article and Find Full Text PDFChemosphere
January 2025
Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:
Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.
The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!