We demonstrate a method of simultaneous holographic recording and readout in photorefractive crystals that provides high write-read beam isolation and wide angular bandwidth. The method uses orthogonally polarized read and write beams and parallel tangent diffraction geometry near the equal curvature condition to provide spatially separable, orthogonally polarized diffracted output beams with high isolation and wide Bragg-matched angular bandwidth. The available angular bandwidth of this read-write technique is analyzed, simulated, and experimentally investigated. The measured angular bandwidth internal to the crystal is approximately 18° × 6° for our 45°-cut BaTiO(3) crystal, yet the entire hologram still demonstrates high Bragg selectivity. In contrast, traditional nonparallel-tangent geometries yield angular apertures of the order of 1° × 4°.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.35.005765DOI Listing

Publication Analysis

Top Keywords

angular bandwidth
16
orthogonally polarized
12
wide angular
8
photorefractive crystals
8
isolation wide
8
angular
5
angular aperture
4
aperture holograms
4
holograms photorefractive
4
crystals orthogonally
4

Similar Publications

Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.

View Article and Find Full Text PDF

Modularized Reconfigurable Functional Electromagnetic Surfaces Using Tightly Coupled Antennas and Back-Loaded Radio Frequency Circuits.

Micromachines (Basel)

December 2024

Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

This paper presents a modularized reconfigurable functional electromagnetic surface (MRFES) for broadband absorption and polarization conversion by using tightly coupled dipole antennas (TCDA) and back-loaded radio frequency (RF) circuits (BLRFC). A dual-polarized antenna array with tight coupling and wide angular scanning characteristics is designed. By loading different RF circuits on the back side of the antenna array's ground plane, switchable broadband absorption and polarization conversion functions are achieved.

View Article and Find Full Text PDF

Information multiplexing from optical holography to multi-channel metaholography.

Nanophotonics

December 2023

School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.

Article Synopsis
  • - Holography is crucial for advancing various technologies like 3D displays, LiDAR, optical encryption, and AI, by facilitating effective optical information storage and processing.
  • - The review discusses the evolution from traditional volume holograms to modern digital holography using ultrathin metasurfaces, highlighting holographic multiplexing and fabrication techniques.
  • - The potential applications of metasurface holography are explored, particularly in high bandwidth scenarios that enhance sensitivity to light's orbital angular momentum, with a look towards future advancements in the field.
View Article and Find Full Text PDF
Article Synopsis
  • This study examines how the shape factor (k) influences the mode properties of graded-index ring-core fibers (GIRCF), specifically focusing on a design with 50 mol% Ge-doping and a shape factor of 2.
  • The research demonstrates that this GIRCF configuration can produce supercontinuum light with orbital angular momentum (OAM) modes, featuring a flat dispersion with slight variations over a wide wavelength range of 750 to 3055 nm.
  • The introduction of a graded refractive index profile (RIP) enhances ring-core fiber design by promoting flat dispersion, minimizing spin-orbit coupling, and enabling better mode purity and broader spectral coverage.
View Article and Find Full Text PDF

A highly efficient and multi-functional butterfly polarization conversion metasurface is proposed for the Ku-Ka frequency range, designed to reduce the radar cross-section. The suggested converter enables dual frequency bands linear-to-cross (LX) and linear-to-circular (LC) polarization transformations. The efficiency of cross-polarization conversion exceeds 90% over the frequency ranges of 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!