α-Tocopheryl succinate induces apoptosis in erbB2-expressing breast cancer cell via NF-κB pathway.

Acta Pharmacol Sin

Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China.

Published: December 2010

Aim: to study the molecular mechanisms underlying α-tocopheryl succinate (α-TOS)-induced apoptosis in erbB2-positive breast cancer cells and to determine whether α-TOS and the human recombinant TNF-related apoptosis-inducing ligand (hrTRAIL) act synergically to induce cell death of erbB2-expressing breast cancer cells.

Methods: the annexin V binding method was used to measure apoptosis induced by α-TOS and/or hrTRAIL. RT-PCR and Western blotting were performed to detect gene and protein expression. A colorimetric assay was performed to detect caspase activity. The TransAM(TM) NF-κB p65 kit was used to assess NF-κB activation.

Results: α-TOS (100 μmol/L) significantly inhibited NF-κB nuclear translocation in erbB2-expressing breast cancer cells; this inhibition is expected to result in the inactivation of NF-κB. α-TOS (50 and 100 μmol/L) inhibited the expression of Flice-like inhibitory protein (FLIP) and cellular inhibitor of apoptosis protein 1 (c-IAP1) in erbB2-positive cells. α-TOS (100 μmol/L) inhibited Akt activation and augmented the activity of caspase 3 and caspase 8 in breast cancer cells expressing erbB2. α-TOS (50 μmol/L) and hrTRAIL (30 mg/mL) acted synergically to induce apoptosis in breast cancer cells. α-TOS also decreased the hrTRAIL-induced transient activation of NF-κB .

Conclusion: our results suggest that α-TOS mediates the apoptosis of erbB2-positive breast cancer cells and acts synergically with hrTRAIL via the NF-κB pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002948PMC
http://dx.doi.org/10.1038/aps.2010.171DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer cells
20
erbb2-expressing breast
12
α-tos 100
12
100 μmol/l
12
μmol/l inhibited
12
α-tocopheryl succinate
8
nf-κb pathway
8
apoptosis erbb2-positive
8
erbb2-positive breast
8

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Analysis of circulating cell-free nuclear and mitochondrial DNA in plasma of Mexican patients with breast cancer.

Gac Med Mex

January 2025

División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara.

Background: The usefulness of circulating free DNA (cfDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) as potential biomarkers in cancer remains controversial.

Objective: To determine the concentration of cfDNA and plasma nDNA and mtDNA levels in breast cancer (BC) patients.

Material And Methods: This study included a total of 86 women (69 patients with BC and 17 women as a control group).

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Background: CT thorax, abdomen and pelvis (CT-TAP) remains the standard in the identification of metastatic disease in patients with newly diagnosed breast cancer. In patients with proven micro and macro axillary nodal metastasis, the optimal radiological technique remains controversial. A consensus on which patients with axillary nodal disease should receive radiological staging for distant disease and how this should be performed is not currently available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!