The role of renal dendritic cells (DCs) in renal fibrosis is unknown. The present study was conducted to examine the relative role of renal DCs and macrophages in the development of renal fibrosis in murine obstructive nephropathy. CD11c-diphtheria toxin receptor (DTR) transgenic mice and CD11b-DTR transgenic mice were subjected to unilateral ureteral obstruction. To conditionally and selectively deplete DCs or macrophages, DT was given to these mice and kidneys were harvested on day 5. Ureteral obstruction elicited renal fibrosis characterized by tubulointerstitial collagen III deposition and accumulation of α-smooth muscle actin-positive cells. Flow cytometric analysis revealed a marked increase in cell counts of F4/80(+) macrophages, F4/80(+) DCs, as well as neutrophils and T cells in the obstructed kidney. DT administration to CD11c-DTR mice led to selective depletion of renal CD11c(+) DCs, but did not affect renal fibrosis. In contrast, administration of DT to CD11b-DTR mice resulted in ablation of all monocyte lineages including macrophages and DCs and attenuated renal fibrosis. Our results do not support the role of renal DCs, but confirm the importance of monocyte lineage cells other than DCs in the development of the early phase of renal fibrosis following ureteral obstruction in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.10246fp | DOI Listing |
Front Oncol
January 2025
Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.
Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.
Front Pharmacol
January 2025
School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China.
[This corrects the article DOI: 10.3389/fphar.2024.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
Background And Purpose: Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis.
View Article and Find Full Text PDFMath Biosci
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA. Electronic address:
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China. Electronic address:
Ethnopharmacological Relevance: The Huangqi-Danshen decoction (HDD) is composed of Huangqi (Astragali Radix) and Danshen (Salviae Miltiorrhizae Radix et Rhizoma) and has been shown to alleviate renal fibrosis. However, the potential therapeutic mechanisms and effective components of HDD remain unclear.
Aim Of The Study: Both lipid metabolism and cGAS/STING signaling play vital roles in the development and progression of renal fibrosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!