Gli-similar 1-3 (Glis1-3) constitute a subfamily of Krüppel-like zinc finger (ZF) transcription factors that are closely related to the Gli protein family. Mutations in GLIS2 are linked to nephronophthisis, a chronic kidney disease characterized by renal fibrosis and atrophy in children and young adults. Currently, very little information exists about the mechanism of action of Glis2, its target genes, or the signaling pathways that regulate its activity. In this study, we show that a region within ZF3 is required for the nuclear localization of Glis2. Analysis of Glis2 DNA binding demonstrated that Glis2 binds effectively to the consensus Glis binding sequence (GlisBS) (G/C)TGGGGGGT(A/C). Although Glis2 was unable to induce transactivation of a GlisBS-dependent reporter, it effectively inhibited the GlisBS-mediated transactivation by Gli1. Mutations that disrupt the tetrahedral configuration of each ZF within Glis2 abolished Glis2 binding to GlisBS and also abrogated its inhibition of Gli1-mediated transactivation. In contrast, Glis2 was able to activate the murine insulin-2 (Ins2) promoter by binding directly to two GlisBS elements located at -263 and -99 within the Ins2 promoter. Phosphomimetic mutation of Ser(245) inhibited the binding of Glis2 to GlisBS and dramatically affected its transactivation of the Ins2 promoter and its ability to inhibit GlisBS-dependent transactivation by Gli1. In this study, we demonstrate that Glis2 can function as a transcriptional activator and that post-translational modification within its DNA-binding domain can regulate its transcriptional activity. This control may play a critical role in the Glis2-dependent regulation of target genes and renal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039324 | PMC |
http://dx.doi.org/10.1074/jbc.M110.165951 | DOI Listing |
Blood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFHaematologica
January 2025
Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
The prognosis of pediatric acute myeloid leukemia (AML) remains poor compared with pediatric acute lymphoblastic leukemia (ALL); accurate diagnosis and treatment strategies based on the genomic background are strongly needed. Recent advances in sequencing technologies have identified novel pediatric AML subtypes, including BCL11B structural variants and UBTF tandem duplications (UBTF-TD), associated with poor prognosis. In contrast, these novel subtypes do not fit into the diagnostic systems for AML of the 5th edition WHO classification or International Consensus Classifications (ICC) released in 2022.
View Article and Find Full Text PDFEMBO Rep
January 2025
Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.
View Article and Find Full Text PDFBlood
December 2024
Institut Gustave Roussy, Villejuif, France.
Pediatric acute myeloid leukemia frequently harbor fusion oncogenes associated with poor prognosis, including KMT2A, NUP98 and GLIS2 rearrangements. While murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSC).
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!