Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037656 | PMC |
http://dx.doi.org/10.1074/jbc.M110.205054 | DOI Listing |
Int J Mol Sci
November 2024
Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.
View Article and Find Full Text PDFTurk J Biol
September 2024
Department of Molecular Biology and Genetics, College of Sciences, Koç University, İstanbul, Turkiye.
Background/aim: The conserved phosphatase Cdc14 facilitates mitotic exit in budding yeast by counteracting mitotic cyclin-dependent kinase activity. Cdc14 is kept in the nucleolus until anaphase onset, when it is released transiently into the nucleoplasm. In late anaphase, Cdc14 is fully released into the cytoplasm upon activation of the mitotic exit network (MEN) to trigger mitotic exit.
View Article and Find Full Text PDFNPJ Syst Biol Appl
October 2024
Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
The cell cycle of budding yeast is governed by an intricate protein regulatory network whose dysregulation can lead to lethal mistakes or aberrant cell division cycles. In this work, we model this network in a Boolean framework for stochastic simulations. Our model is sufficiently detailed to account for the phenotypes of 40 mutant yeast strains (83% of the experimentally characterized strains that we simulated) and also to simulate an endoreplicating strain (multiple rounds of DNA synthesis without mitosis) and a strain that exhibits 'Cdc14 endocycles' (periodic transitions between metaphase and anaphase).
View Article and Find Full Text PDFJ Biol Chem
September 2024
Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA. Electronic address:
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle.
View Article and Find Full Text PDFCell Rep
July 2024
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA. Electronic address:
In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!