Intermittent theta burst stimulation (iTBS) transiently increases motor cortex excitability in healthy humans by a process thought to involve synaptic long-term potentiation (LTP), and this is enhanced by nicotine. Acquisition of a ballistic motor task is likewise accompanied by increased excitability and presumed intracortical LTP. Here, we test how iTBS and nicotine influences subsequent motor learning. Ten healthy subjects participated in a double-blinded placebo-controlled trial testing the effects of iTBS and nicotine. iTBS alone increased the rate of learning but this increase was blocked by nicotine. We then investigated factors other than synaptic strengthening that may play a role. Behavioral analysis and modeling suggested that iTBS increased performance variability, which correlated with learning outcome. A control experiment confirmed the increase in motor output variability by showing that iTBS increased the dispersion of involuntary transcranial magnetic stimulation-evoked thumb movements. We suggest that in addition to the effect on synaptic plasticity, iTBS may have facilitated performance by increasing motor output variability; nicotine negated this effect on variability perhaps via increasing the signal-to-noise ratio in cerebral cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhq231 | DOI Listing |
Med Sci Monit
January 2025
Department of Rehabilitation, Guizhou Medical University, Guiyang, Guizhou, China.
BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Rehabilitation Medicine (Rehabilitation Center), Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan , Shandong, 250012, China.
Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.
Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.
PLoS One
January 2025
Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
Background And Objective: The Scania Accelerated Intermittent Theta-burst Implementation Study (SATIS) aimed to investigate the tolerability, preliminary effectiveness, and practical feasibility of an accelerated intermittent theta burst stimulation (aTBS) protocol in treating depression.
Methods: We used an open-label observational design, recruiting 20 patients (aged 19-84 years) from two public brain stimulation centers in Sweden. During the five-day treatment period and at a follow-up visit after 30 days we closely monitored adverse events and collected self-rated side effect data.
Schizophr Res Cogn
March 2025
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030,China.
Background And Objective: The dorsolateral prefrontal cortex (DLPFC) - cerebellum circuit has been implicated in the pathogenesis of negative symptoms of schizophrenia (SZ). Both areas are considered separate targets for repetitive transcranial magnetic stimulation (rTMS) treatment, showing potential for improving negative symptoms. However, there is still a lack of research that targets both DLPFC and cerebellum simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!