Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disease that is characterized by a near-complete absence of adipose tissue from birth or early infancy. Mutations in the BSCL2 gene are known to result in CGL2, a more severe phenotype than CGL1, with earlier onset, more extensive fat loss and biochemical changes, more severe intellectual impairment, and more severe cardiomyopathy. We report a 3-month-old Taiwanese boy with initial presentation of a lack of subcutaneous fat, prominent musculature, generalized eruptive xanthomas, and extreme hypertriglyceridemia. Absence of mechanical adipose tissue in the orbits and scalp was revealed by head magnetic resonance imaging. Hepatomegaly was noticed, and histological examination of a liver biopsy specimen suggested severe hepatic steatosis and periportal necrosis. However, echocardiography indicated no sign of cardiomyopathy and he showed no distinct intellectual impairment that interfered with daily life. About 1 year later, abdominal computed tomography revealed enlargement of kidneys. He had a homozygous insertion of a nucleotide, 783insG (Ile262fs mutation), in exon 7 of the BSCL2 gene. We reviewed the genotype of CGL cases from Japan, India, China and Taiwan, and found that BSCL2 is a major causative gene for CGL in Asian.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1607-551X(10)70094-2 | DOI Listing |
Cell Commun Signal
January 2025
IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.
View Article and Find Full Text PDFNeuro Endocrinol Lett
November 2024
First Affiliated Hospital of Kunming Medical University, Kunming, China.
Sci Rep
November 2024
Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India.
In this study, we analysed the mutation spectrum in subjects with suspected lipodystrophy using a targeted Next-generation sequencing (NGS) approach. Subjects with suspected lipodystrophy were for screened six genes (AGPAT2, BSCL2, LMNA, PPARG, ZMPSTE24, INSR) and the variants identified were confirmed through Sanger sequencing. The clinical and biochemical parameters were compared among the mutation positive and negative subjects.
View Article and Find Full Text PDFJ Diabetes Investig
December 2024
Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan.
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1).
View Article and Find Full Text PDFAdipocyte
December 2024
Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon.
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - , , , , , , , , , and - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!