The present study describes preparation and characterization of a thermally stable and biodegradable biopolymer using collagen and a natural polymer, alginic acid (AA). Required concentration of alginic acid and collagen was optimized and the resulting biopolymer was characterized for, degree of cross-linking, mechanical strength, thermal stability, biocompatibility (toxicity) and biodegradability. Results reveal, the degree of cross-linking of alginic acid (at 1.5% concentration) with collagen was calculated as 75%, whereas it was 83% with standard cross-linking agent, glutaraldehyde (at 1.5% concentration). The AA cross-linked biopolymer was stable up to 245°C and Exhibits 5-6-fold increase in mechanical (tensile) strength compared to plain collagen (native) materials. However, glutaraldehyde cross-linked material exhibits comparatively less thermal stability and brittle in nature (low tensile strength). With regard to cell toxicity, no cytotoxicity was observed for AA cross-linked material when tested with mesenchymal cells and found degradable when treated with collagenase enzyme. The nature of bonding pattern and the reason for thermal stability of AA cross-linked collagen biopolymer was discussed in detail with the help of bioinformatics. A supplementary file on efficacy of AACC as a wound dressing material is demonstrated in detail with animal model studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2010.11.011 | DOI Listing |
J Mater Chem B
January 2025
NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614 Poznań, Poland.
Environ Res
November 2024
School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
The efficient removal of uranium (U(Ⅵ)) from nuclear wastewater presents a significant challenge due to the high concentrations of uranium and various interfering ions. In this study, we developed and used metal-organic framework hydrogel (MOFH) as a highly efficient adsorbent for uranium removal. The MOFH, synthesized with ferrocyanides and functional groups (Fe(Ⅱ)-CN-Fe(Ⅲ), OH, -COOH, and -NH), exhibited good chemical stability, large separation capacity, and high selectivity.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
November 2024
Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Alginate, sourced from seaweed, holds significant importance in industrial and biomedical domains due to its versatile properties. Its chemical composition, primarily comprising β-D-mannuronic acid and α-L-guluronic acid, governs its physical and biological attributes. This polysaccharide, extracted from brown algae and bacteria, offers diverse compositions impacting key factors such as molecular weight, flexibility, solubility, and stability.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Chinasea Group Co., LTD, Taiyuan, 030012, China.
In this paper, the adsorption of gatifloxacin (GAT) by three types of polystyrene nano-plastics (PSNPs), including 400 nm polystyrene (PS), amino-modified PS (PS-NH), and carboxyl-modified PS (PS-COOH) was studied and the adsorption mechanism were assessed. Experimental findings revealed that the equilibrium adsorption capacity of PSNPs to GAT followed the order PS-NH > PS-COOH > PS. The adsorption was regulated by both physical and chemical mechanisms, with intra-particle and external diffusion jointly controlling the adsorption rate.
View Article and Find Full Text PDFCarbohydr Res
November 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland. Electronic address:
In this study, the mechanism and nature of mechanical force-induced conformational transitions of alginate oligomers with different ratios of β-d-mannuronic acid (M unit) and α-l-guluronic acid (G unit) units were investigated. The influence of the type of glycosidic linkage in either homo- or heterooligomers on the nature of conformational transitions was also considered. For this purpose, two different theoretical methods were used: quantum mechanics (QM) at the DFT level with the EGO (Enforced Geometry Optimization) approach previously tested also for other saccharide systems, and molecular dynamics (MD) simulations within hybrid interaction potentials, which take into account both the ab initio (QM) level of theory and classical molecular mechanics (MM) force fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!