Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: DNA sequences afford access to the evolutionary pathways of life. Particularly mobile elements that constantly co-evolve in genomes encrypt recent and ancient information of their host's history. In mammals there is an extraordinarily abundant activity of mobile elements that occurs in a dynamic succession of active families, subfamilies, types, and subtypes of retroposed elements. The high frequency of retroposons in mammals implies that, by chance, such elements also insert into each other. While inactive elements are no longer able to retropose, active elements retropose by chance into other active and inactive elements. Thousands of such directional, element-in-element insertions are found in present-day genomes. To help analyze these events, we developed a computational algorithm (Transpositions in Transpositions, or TinT) that examines the different frequencies of nested transpositions and reconstructs the chronological order of retroposon activities.
Results: By examining the different frequencies of such nested transpositions, the TinT application reconstructs the chronological order of retroposon activities. We use such activity patterns as a comparative tool to (1) delineate the historical rise and fall of retroposons and their relations to each other, (2) understand the retroposon-induced complexity of recent genomes, and (3) find selective informative homoplasy-free markers of phylogeny. The efficiency of the new application is demonstrated by applying it to dimeric Alu Short INterspersed Elements (SINE) to derive a complete chronology of such elements in primates.
Conclusion: The user-friendly, web-based TinT interface presented here affords an easy, automated screening for nested transpositions from genome assemblies or trace data, assembles them in a frequency-matrix, and schematically displays their chronological activity history.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014933 | PMC |
http://dx.doi.org/10.1186/1471-2148-10-376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!