Coupling thermal treatment with microbial reductive dechlorination is a promising remedy for tetrachloroethene (PCE) and trichloroethene (TCE) contaminated source zones. Laboratory experiments evaluated Dehalococcoides (Dhc) dechlorination performance, viability, and biomarker gene (DNA) and transcript (mRNA) abundances during exposure to elevated temperatures. The PCE-dechlorinating consortia BDI and OW produced ethene when incubated at temperatures of 30 °C, but vinyl chloride (VC) accumulated when cultures were incubated at 35 or 40 °C. Cultures incubated at 40 °C for less than 49 days resumed VC dechlorination following cooling; however, incubation at 45 °C resulted in complete loss of dechlorination activity. Dhc 16S rRNA, bvcA, and vcrA gene abundances in cultures showing complete dechlorination to ethene at 30 °C exceeded those measured in cultures incubated at higher temperatures, consistent with observed dechlorination activities. Conversely, biomarker gene transcript abundances per cell in cultures incubated at 35 and 40 °C were generally at least one order-of-magnitude greater than those measured in ethene-producing cultures incubated at 30 °C. Even in cultures accumulating VC, transcription of the vcrA gene, which is implicated in VC-to-ethene dechlorination, was up-regulated. Temperature stress caused the up-regulation of Dhc reductive dehalogenase gene expression indicating that Dhc gene expression measurements should be interpreted cautiously as Dhc biomarker gene transcript abundances may not correlate with dechlorination activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es1023477DOI Listing

Publication Analysis

Top Keywords

cultures incubated
20
incubated °c
16
biomarker gene
12
dechlorination
9
dechlorination performance
8
°c cultures
8
dechlorination activity
8
vcra gene
8
gene transcript
8
transcript abundances
8

Similar Publications

Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture.

Microb Pathog

January 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation.

View Article and Find Full Text PDF

Isolation of Soil Microorganisms Using iChip Technology.

J Vis Exp

January 2025

Charlottetown Research and Development Center, Agriculture and Agri-Food Canada; Department of Chemistry, University of Prince Edward Island;

The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods.

View Article and Find Full Text PDF

Due to its anatomical and physiological similarities to the human eye, the porcine eye serves as a robust model for biomedical research and ocular toxicity assessment. An air/liquid corneal culture system using porcine eyes was developed, and ex vivo epithelial wound healing was utilized as a critical parameter for these studies. Fresh pig corneas were processed for organ culture, with or without epithelial wounding.

View Article and Find Full Text PDF

FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1.

Graefes Arch Clin Exp Ophthalmol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.

Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.

Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191.

View Article and Find Full Text PDF

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!