Type 1 blue copper proteins uniquely coordinate Cu(2+) in a trigonal planar geometry, formed by three strong equatorial ligands, His, His, and Cys, in the protein. We designed a stable Cu(2+) coordination scaffold composed of a four-stranded α-helical coiled-coil structure. Two His residues and one Cys residue were situated to form the trigonal planar geometry and to coordinate the Cu(2+) in the hydrophobic core of the scaffold. The protein bound Cu(2+), displayed a blue color, and exhibited UV-vis spectra with a maximum of 602-616 nm, arising from the thiolate-Cu(2+) ligand to metal charge transfer, depending on the exogenous axial ligand, Cl(-) or HPO(4)(2-). The protein-Cu(2+) complex also showed unresolved small A(∥) values in the electron paramagnetic resonance (EPR) spectral analysis and a 328 mV (vs normal hydrogen electrode, NHE) redox potential with a fast electron reaction rate. The X-ray absorption spectrum revealed that the Cu(2+) coordination environment was identical to that found in natural type 1 blue copper proteins. The extended X-ray absorption fine structure (EXAFS) analysis of the protein showed two typical Cu-N(His) at around 1.9-2.0 Å, Cu-S(Cys) at 2.3 Å, and a long Cu-Cl at a 2.66 Å, which are also characteristic of the natural type 1 blue copper proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja106263yDOI Listing

Publication Analysis

Top Keywords

type blue
16
blue copper
16
copper proteins
12
coordinate cu2+
8
trigonal planar
8
planar geometry
8
cu2+ coordination
8
x-ray absorption
8
natural type
8
blue
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!